'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , half(0(x1)) -> 0(s(s(half(p(s(p(s(x1)))))))) , half(s(s(x1))) -> s(half(p(p(s(s(x1)))))) , rd(0(x1)) -> 0(s(0(0(0(0(s(0(rd(x1)))))))))} Details: We have computed the following set of weak (innermost) dependency pairs: { p^#(0(x1)) -> c_0(p^#(x1)) , p^#(s(x1)) -> c_1() , p^#(p(s(x1))) -> c_2(p^#(x1)) , f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1))))))) , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1)))))))))))) , half^#(0(x1)) -> c_6(half^#(p(s(p(s(x1)))))) , half^#(s(s(x1))) -> c_7(half^#(p(p(s(s(x1)))))) , rd^#(0(x1)) -> c_8(rd^#(x1))} The usable rules are: { p(0(x1)) -> 0(s(s(p(x1)))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))} The estimated dependency graph contains the following edges: {p^#(0(x1)) -> c_0(p^#(x1))} ==> {p^#(p(s(x1))) -> c_2(p^#(x1))} {p^#(0(x1)) -> c_0(p^#(x1))} ==> {p^#(s(x1)) -> c_1()} {p^#(0(x1)) -> c_0(p^#(x1))} ==> {p^#(0(x1)) -> c_0(p^#(x1))} {p^#(p(s(x1))) -> c_2(p^#(x1))} ==> {p^#(p(s(x1))) -> c_2(p^#(x1))} {p^#(p(s(x1))) -> c_2(p^#(x1))} ==> {p^#(s(x1)) -> c_1()} {p^#(p(s(x1))) -> c_2(p^#(x1))} ==> {p^#(0(x1)) -> c_0(p^#(x1))} {f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))} ==> {p^#(s(x1)) -> c_1()} {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))} ==> {p^#(p(s(x1))) -> c_2(p^#(x1))} {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))} ==> {p^#(s(x1)) -> c_1()} {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))} ==> {p^#(0(x1)) -> c_0(p^#(x1))} {j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))} ==> {p^#(s(x1)) -> c_1()} {half^#(0(x1)) -> c_6(half^#(p(s(p(s(x1))))))} ==> {half^#(s(s(x1))) -> c_7(half^#(p(p(s(s(x1))))))} {half^#(0(x1)) -> c_6(half^#(p(s(p(s(x1))))))} ==> {half^#(0(x1)) -> c_6(half^#(p(s(p(s(x1))))))} {half^#(s(s(x1))) -> c_7(half^#(p(p(s(s(x1))))))} ==> {half^#(s(s(x1))) -> c_7(half^#(p(p(s(s(x1))))))} {half^#(s(s(x1))) -> c_7(half^#(p(p(s(s(x1))))))} ==> {half^#(0(x1)) -> c_6(half^#(p(s(p(s(x1))))))} {rd^#(0(x1)) -> c_8(rd^#(x1))} ==> {rd^#(0(x1)) -> c_8(rd^#(x1))} We consider the following path(s): 1) { g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p^#(0(x1)) -> c_0(p^#(x1)) , p^#(p(s(x1))) -> c_2(p^#(x1))} The usable rules for this path are the following: { p(0(x1)) -> 0(s(s(p(x1)))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p^#(0(x1)) -> c_0(p^#(x1)) , p^#(p(s(x1))) -> c_2(p^#(x1))} Details: We apply the weight gap principle, strictly orienting the rules { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] j(x1) = [1] x1 + [1] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [1] c_1() = [0] c_2(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [1] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(p(s(x1))) -> c_2(p^#(x1))} and weakly orienting the rules { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(p(s(x1))) -> c_2(p^#(x1))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] j(x1) = [1] x1 + [1] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [4] c_0(x1) = [1] x1 + [1] c_1() = [0] c_2(x1) = [1] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [1] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))} and weakly orienting the rules { p^#(p(s(x1))) -> c_2(p^#(x1)) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] j(x1) = [1] x1 + [1] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [2] c_1() = [0] c_2(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [9] c_4(x1) = [1] x1 + [1] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))} and weakly orienting the rules { g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p^#(p(s(x1))) -> c_2(p^#(x1)) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [8] j(x1) = [1] x1 + [1] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [4] c_1() = [0] c_2(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [9] c_4(x1) = [1] x1 + [1] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f(s(x1)) -> p(s(g(p(s(s(x1))))))} and weakly orienting the rules { g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p^#(p(s(x1))) -> c_2(p^#(x1)) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f(s(x1)) -> p(s(g(p(s(s(x1))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [13] g(x1) = [1] x1 + [9] j(x1) = [1] x1 + [5] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [3] c_1() = [0] c_2(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [15] c_4(x1) = [1] x1 + [1] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(0(x1)) -> c_0(p^#(x1))} and weakly orienting the rules { f(s(x1)) -> p(s(g(p(s(s(x1)))))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p^#(p(s(x1))) -> c_2(p^#(x1)) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(0(x1)) -> c_0(p^#(x1))} Details: Interpretation Functions: p(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] j(x1) = [1] x1 + [0] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [4] c_4(x1) = [1] x1 + [1] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))} Weak Rules: { p^#(0(x1)) -> c_0(p^#(x1)) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p^#(p(s(x1))) -> c_2(p^#(x1)) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))} Weak Rules: { p^#(0(x1)) -> c_0(p^#(x1)) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p^#(p(s(x1))) -> c_2(p^#(x1)) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { p_0(2) -> 10 , p_0(2) -> 12 , p_0(2) -> 25 , p_0(5) -> 4 , p_0(11) -> 10 , p_0(11) -> 25 , p_1(2) -> 16 , p_1(2) -> 22 , p_1(2) -> 24 , p_1(10) -> 22 , p_1(10) -> 24 , p_1(12) -> 22 , p_1(12) -> 24 , p_1(17) -> 8 , p_1(20) -> 19 , p_1(20) -> 21 , p_1(20) -> 44 , p_1(20) -> 46 , p_1(20) -> 66 , p_1(20) -> 68 , p_1(23) -> 22 , p_1(25) -> 22 , p_1(25) -> 24 , p_1(26) -> 25 , p_1(29) -> 28 , p_1(35) -> 34 , p_1(35) -> 50 , p_1(37) -> 34 , p_1(37) -> 36 , p_1(37) -> 50 , p_1(53) -> 52 , p_2(2) -> 47 , p_2(2) -> 49 , p_2(14) -> 41 , p_2(34) -> 47 , p_2(34) -> 49 , p_2(36) -> 47 , p_2(36) -> 49 , p_2(42) -> 32 , p_2(45) -> 44 , p_2(48) -> 47 , p_2(50) -> 47 , p_2(50) -> 49 , p_2(51) -> 50 , p_2(54) -> 19 , p_2(54) -> 21 , p_2(54) -> 44 , p_2(54) -> 46 , p_2(54) -> 66 , p_2(54) -> 68 , p_2(55) -> 54 , p_2(56) -> 19 , p_2(56) -> 21 , p_2(56) -> 44 , p_2(56) -> 46 , p_2(56) -> 66 , p_2(56) -> 68 , p_2(61) -> 60 , p_2(61) -> 72 , p_2(63) -> 60 , p_2(63) -> 62 , p_2(63) -> 72 , p_3(2) -> 69 , p_3(2) -> 71 , p_3(60) -> 69 , p_3(60) -> 71 , p_3(62) -> 69 , p_3(62) -> 71 , p_3(64) -> 58 , p_3(67) -> 66 , p_3(70) -> 69 , p_3(72) -> 69 , p_3(72) -> 71 , p_3(73) -> 72 , 0_0(2) -> 2 , 0_0(2) -> 10 , 0_0(2) -> 12 , 0_0(2) -> 16 , 0_0(2) -> 22 , 0_0(2) -> 24 , 0_0(2) -> 25 , 0_0(2) -> 34 , 0_0(2) -> 36 , 0_0(2) -> 47 , 0_0(2) -> 49 , 0_0(2) -> 50 , 0_0(2) -> 60 , 0_0(2) -> 62 , 0_0(2) -> 69 , 0_0(2) -> 71 , 0_0(2) -> 72 , 0_1(14) -> 10 , 0_1(14) -> 12 , 0_1(14) -> 16 , 0_1(14) -> 22 , 0_1(14) -> 24 , 0_1(14) -> 25 , 0_1(14) -> 47 , 0_1(14) -> 49 , 0_1(14) -> 69 , 0_1(14) -> 71 , 0_2(39) -> 22 , 0_2(39) -> 24 , s_0(2) -> 2 , s_0(2) -> 10 , s_0(2) -> 12 , s_0(2) -> 16 , s_0(2) -> 22 , s_0(2) -> 24 , s_0(2) -> 25 , s_0(2) -> 34 , s_0(2) -> 36 , s_0(2) -> 47 , s_0(2) -> 49 , s_0(2) -> 50 , s_0(2) -> 60 , s_0(2) -> 62 , s_0(2) -> 69 , s_0(2) -> 71 , s_0(2) -> 72 , s_0(6) -> 5 , s_0(7) -> 4 , s_0(7) -> 6 , s_0(8) -> 7 , s_0(10) -> 9 , s_0(12) -> 11 , s_1(2) -> 37 , s_1(2) -> 52 , s_1(10) -> 26 , s_1(15) -> 14 , s_1(16) -> 15 , s_1(16) -> 41 , s_1(18) -> 17 , s_1(19) -> 8 , s_1(19) -> 18 , s_1(21) -> 20 , s_1(24) -> 23 , s_1(30) -> 29 , s_1(31) -> 28 , s_1(31) -> 30 , s_1(32) -> 31 , s_1(34) -> 33 , s_1(36) -> 35 , s_1(37) -> 53 , s_2(2) -> 63 , s_2(34) -> 51 , s_2(40) -> 39 , s_2(41) -> 40 , s_2(43) -> 42 , s_2(44) -> 32 , s_2(44) -> 43 , s_2(46) -> 45 , s_2(49) -> 48 , s_2(56) -> 55 , s_2(57) -> 54 , s_2(57) -> 56 , s_2(58) -> 19 , s_2(58) -> 21 , s_2(58) -> 44 , s_2(58) -> 46 , s_2(58) -> 57 , s_2(58) -> 66 , s_2(58) -> 68 , s_2(60) -> 59 , s_2(62) -> 61 , s_3(60) -> 73 , s_3(65) -> 64 , s_3(66) -> 58 , s_3(66) -> 65 , s_3(68) -> 67 , s_3(71) -> 70 , f_1(22) -> 19 , f_1(22) -> 21 , f_1(22) -> 44 , f_1(22) -> 46 , f_1(22) -> 66 , f_1(22) -> 68 , f_2(47) -> 44 , f_2(47) -> 46 , f_3(69) -> 66 , f_3(69) -> 68 , g_1(52) -> 19 , g_1(52) -> 21 , g_1(52) -> 44 , g_1(52) -> 46 , g_1(52) -> 66 , g_1(52) -> 68 , j_0(9) -> 8 , j_1(33) -> 32 , j_2(59) -> 58 , p^#_0(2) -> 1 , p^#_0(4) -> 3 , p^#_0(6) -> 13 , p^#_1(28) -> 27 , p^#_1(30) -> 38 , c_0_0(1) -> 1 , c_2_0(13) -> 3 , c_2_1(38) -> 27 , g^#_0(2) -> 1 , c_4_0(3) -> 1 , c_4_1(27) -> 1} 2) { g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p^#(0(x1)) -> c_0(p^#(x1)) , p^#(p(s(x1))) -> c_2(p^#(x1)) , p^#(s(x1)) -> c_1()} The usable rules for this path are the following: { p(0(x1)) -> 0(s(s(p(x1)))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , p^#(0(x1)) -> c_0(p^#(x1)) , p^#(p(s(x1))) -> c_2(p^#(x1)) , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p^#(s(x1)) -> c_1()} Details: We apply the weight gap principle, strictly orienting the rules { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , p^#(s(x1)) -> c_1()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , p^#(s(x1)) -> c_1()} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] j(x1) = [1] x1 + [1] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [3] c_0(x1) = [1] x1 + [0] c_1() = [0] c_2(x1) = [1] x1 + [2] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(p(s(x1))) -> c_2(p^#(x1))} and weakly orienting the rules { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , p^#(s(x1)) -> c_1()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(p(s(x1))) -> c_2(p^#(x1))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] j(x1) = [1] x1 + [1] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))} and weakly orienting the rules { p^#(p(s(x1))) -> c_2(p^#(x1)) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , p^#(s(x1)) -> c_1()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] j(x1) = [1] x1 + [3] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [9] c_4(x1) = [1] x1 + [0] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , p^#(0(x1)) -> c_0(p^#(x1))} and weakly orienting the rules { g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p^#(p(s(x1))) -> c_2(p^#(x1)) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , p^#(s(x1)) -> c_1()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , p^#(0(x1)) -> c_0(p^#(x1))} Details: Interpretation Functions: p(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [14] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] j(x1) = [1] x1 + [1] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))} and weakly orienting the rules { j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , p^#(0(x1)) -> c_0(p^#(x1)) , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p^#(p(s(x1))) -> c_2(p^#(x1)) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , p^#(s(x1)) -> c_1()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [1] g(x1) = [1] x1 + [12] j(x1) = [1] x1 + [6] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] c_1() = [0] c_2(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [13] c_4(x1) = [1] x1 + [3] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , f(s(x1)) -> p(s(g(p(s(s(x1))))))} Weak Rules: { g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , p^#(0(x1)) -> c_0(p^#(x1)) , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p^#(p(s(x1))) -> c_2(p^#(x1)) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , p^#(s(x1)) -> c_1()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , f(s(x1)) -> p(s(g(p(s(s(x1))))))} Weak Rules: { g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , p^#(0(x1)) -> c_0(p^#(x1)) , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p^#(p(s(x1))) -> c_2(p^#(x1)) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , p^#(s(x1)) -> c_1()} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { p_0(2) -> 10 , p_0(2) -> 12 , p_0(2) -> 25 , p_0(5) -> 4 , p_0(11) -> 10 , p_0(11) -> 25 , p_1(2) -> 16 , p_1(2) -> 22 , p_1(2) -> 24 , p_1(10) -> 22 , p_1(10) -> 24 , p_1(12) -> 22 , p_1(12) -> 24 , p_1(17) -> 8 , p_1(20) -> 19 , p_1(20) -> 21 , p_1(20) -> 44 , p_1(20) -> 46 , p_1(20) -> 66 , p_1(20) -> 68 , p_1(23) -> 22 , p_1(25) -> 22 , p_1(25) -> 24 , p_1(26) -> 25 , p_1(29) -> 28 , p_1(35) -> 34 , p_1(35) -> 50 , p_1(37) -> 34 , p_1(37) -> 36 , p_1(37) -> 50 , p_1(53) -> 52 , p_2(2) -> 47 , p_2(2) -> 49 , p_2(2) -> 69 , p_2(2) -> 71 , p_2(14) -> 41 , p_2(34) -> 47 , p_2(34) -> 49 , p_2(36) -> 47 , p_2(36) -> 49 , p_2(42) -> 32 , p_2(45) -> 44 , p_2(48) -> 47 , p_2(50) -> 47 , p_2(50) -> 49 , p_2(51) -> 50 , p_2(54) -> 19 , p_2(54) -> 21 , p_2(54) -> 44 , p_2(54) -> 46 , p_2(54) -> 66 , p_2(54) -> 68 , p_2(55) -> 54 , p_2(56) -> 19 , p_2(56) -> 21 , p_2(56) -> 44 , p_2(56) -> 46 , p_2(56) -> 66 , p_2(56) -> 68 , p_2(59) -> 72 , p_2(60) -> 69 , p_2(60) -> 71 , p_2(61) -> 60 , p_2(61) -> 72 , p_2(62) -> 69 , p_2(62) -> 71 , p_2(63) -> 60 , p_2(63) -> 62 , p_2(63) -> 72 , p_2(64) -> 58 , p_2(67) -> 66 , p_2(70) -> 69 , p_2(72) -> 69 , p_2(72) -> 71 , 0_0(2) -> 2 , 0_0(2) -> 10 , 0_0(2) -> 12 , 0_0(2) -> 16 , 0_0(2) -> 22 , 0_0(2) -> 24 , 0_0(2) -> 25 , 0_0(2) -> 34 , 0_0(2) -> 36 , 0_0(2) -> 47 , 0_0(2) -> 49 , 0_0(2) -> 50 , 0_0(2) -> 60 , 0_0(2) -> 62 , 0_0(2) -> 69 , 0_0(2) -> 71 , 0_0(2) -> 72 , 0_1(14) -> 10 , 0_1(14) -> 12 , 0_1(14) -> 16 , 0_1(14) -> 22 , 0_1(14) -> 24 , 0_1(14) -> 25 , 0_1(14) -> 47 , 0_1(14) -> 49 , 0_1(14) -> 69 , 0_1(14) -> 71 , 0_2(39) -> 22 , 0_2(39) -> 24 , s_0(2) -> 2 , s_0(2) -> 10 , s_0(2) -> 12 , s_0(2) -> 16 , s_0(2) -> 22 , s_0(2) -> 24 , s_0(2) -> 25 , s_0(2) -> 34 , s_0(2) -> 36 , s_0(2) -> 47 , s_0(2) -> 49 , s_0(2) -> 50 , s_0(2) -> 60 , s_0(2) -> 62 , s_0(2) -> 69 , s_0(2) -> 71 , s_0(2) -> 72 , s_0(6) -> 5 , s_0(7) -> 4 , s_0(7) -> 6 , s_0(8) -> 7 , s_0(10) -> 9 , s_0(12) -> 11 , s_1(2) -> 37 , s_1(2) -> 52 , s_1(10) -> 26 , s_1(15) -> 14 , s_1(16) -> 15 , s_1(16) -> 41 , s_1(18) -> 17 , s_1(19) -> 8 , s_1(19) -> 18 , s_1(21) -> 20 , s_1(24) -> 23 , s_1(30) -> 29 , s_1(31) -> 28 , s_1(31) -> 30 , s_1(32) -> 31 , s_1(34) -> 33 , s_1(36) -> 35 , s_1(37) -> 53 , s_2(2) -> 63 , s_2(34) -> 51 , s_2(40) -> 39 , s_2(41) -> 40 , s_2(43) -> 42 , s_2(44) -> 32 , s_2(44) -> 43 , s_2(46) -> 45 , s_2(49) -> 48 , s_2(56) -> 55 , s_2(57) -> 54 , s_2(57) -> 56 , s_2(58) -> 19 , s_2(58) -> 21 , s_2(58) -> 44 , s_2(58) -> 46 , s_2(58) -> 57 , s_2(58) -> 66 , s_2(58) -> 68 , s_2(60) -> 59 , s_2(62) -> 61 , s_2(65) -> 64 , s_2(66) -> 58 , s_2(66) -> 65 , s_2(68) -> 67 , s_2(71) -> 70 , f_1(22) -> 19 , f_1(22) -> 21 , f_1(22) -> 44 , f_1(22) -> 46 , f_1(22) -> 66 , f_1(22) -> 68 , f_2(47) -> 44 , f_2(47) -> 46 , f_2(69) -> 66 , f_2(69) -> 68 , g_1(52) -> 19 , g_1(52) -> 21 , g_1(52) -> 44 , g_1(52) -> 46 , g_1(52) -> 66 , g_1(52) -> 68 , j_0(9) -> 8 , j_1(33) -> 32 , j_2(59) -> 58 , p^#_0(2) -> 1 , p^#_0(4) -> 3 , p^#_0(6) -> 13 , p^#_1(28) -> 27 , p^#_1(30) -> 38 , c_0_0(1) -> 1 , c_1_0() -> 1 , c_1_0() -> 3 , c_1_0() -> 13 , c_1_1() -> 27 , c_1_1() -> 38 , c_2_0(13) -> 3 , c_2_1(38) -> 27 , g^#_0(2) -> 1 , c_4_0(3) -> 1 , c_4_1(27) -> 1} 3) { g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p^#(s(x1)) -> c_1()} The usable rules for this path are the following: { p(0(x1)) -> 0(s(s(p(x1)))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p^#(s(x1)) -> c_1()} Details: We apply the weight gap principle, strictly orienting the rules { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] j(x1) = [1] x1 + [1] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [1] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(s(x1)) -> c_1()} and weakly orienting the rules { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(s(x1)) -> c_1()} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] j(x1) = [1] x1 + [1] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [8] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [1] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))} and weakly orienting the rules { p^#(s(x1)) -> c_1() , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] j(x1) = [1] x1 + [1] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [9] c_4(x1) = [1] x1 + [1] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))} and weakly orienting the rules { g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p^#(s(x1)) -> c_1() , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [8] j(x1) = [1] x1 + [1] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [9] c_4(x1) = [1] x1 + [1] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f(s(x1)) -> p(s(g(p(s(s(x1))))))} and weakly orienting the rules { g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p^#(s(x1)) -> c_1() , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f(s(x1)) -> p(s(g(p(s(s(x1))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [14] g(x1) = [1] x1 + [11] j(x1) = [1] x1 + [5] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [13] c_4(x1) = [1] x1 + [4] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))} Weak Rules: { f(s(x1)) -> p(s(g(p(s(s(x1)))))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p^#(s(x1)) -> c_1() , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))} Weak Rules: { f(s(x1)) -> p(s(g(p(s(s(x1)))))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p^#(s(x1)) -> c_1() , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { p_0(2) -> 10 , p_0(2) -> 12 , p_0(2) -> 24 , p_0(5) -> 4 , p_0(11) -> 10 , p_0(11) -> 24 , p_1(2) -> 15 , p_1(2) -> 21 , p_1(2) -> 23 , p_1(10) -> 21 , p_1(10) -> 23 , p_1(12) -> 21 , p_1(12) -> 23 , p_1(16) -> 8 , p_1(19) -> 18 , p_1(19) -> 20 , p_1(19) -> 42 , p_1(19) -> 44 , p_1(19) -> 64 , p_1(19) -> 66 , p_1(22) -> 21 , p_1(24) -> 21 , p_1(24) -> 23 , p_1(25) -> 24 , p_1(28) -> 27 , p_1(34) -> 33 , p_1(34) -> 48 , p_1(36) -> 33 , p_1(36) -> 35 , p_1(36) -> 48 , p_1(51) -> 50 , p_2(2) -> 45 , p_2(2) -> 47 , p_2(13) -> 39 , p_2(33) -> 45 , p_2(33) -> 47 , p_2(35) -> 45 , p_2(35) -> 47 , p_2(40) -> 31 , p_2(43) -> 42 , p_2(46) -> 45 , p_2(48) -> 45 , p_2(48) -> 47 , p_2(49) -> 48 , p_2(52) -> 18 , p_2(52) -> 20 , p_2(52) -> 42 , p_2(52) -> 44 , p_2(52) -> 64 , p_2(52) -> 66 , p_2(53) -> 52 , p_2(54) -> 18 , p_2(54) -> 20 , p_2(54) -> 42 , p_2(54) -> 44 , p_2(54) -> 64 , p_2(54) -> 66 , p_2(59) -> 58 , p_2(59) -> 70 , p_2(61) -> 58 , p_2(61) -> 60 , p_2(61) -> 70 , p_3(2) -> 67 , p_3(2) -> 69 , p_3(58) -> 67 , p_3(58) -> 69 , p_3(60) -> 67 , p_3(60) -> 69 , p_3(62) -> 56 , p_3(65) -> 64 , p_3(68) -> 67 , p_3(70) -> 67 , p_3(70) -> 69 , p_3(71) -> 70 , 0_0(2) -> 2 , 0_0(2) -> 10 , 0_0(2) -> 12 , 0_0(2) -> 15 , 0_0(2) -> 21 , 0_0(2) -> 23 , 0_0(2) -> 24 , 0_0(2) -> 33 , 0_0(2) -> 35 , 0_0(2) -> 45 , 0_0(2) -> 47 , 0_0(2) -> 48 , 0_0(2) -> 58 , 0_0(2) -> 60 , 0_0(2) -> 67 , 0_0(2) -> 69 , 0_0(2) -> 70 , 0_1(13) -> 10 , 0_1(13) -> 12 , 0_1(13) -> 15 , 0_1(13) -> 21 , 0_1(13) -> 23 , 0_1(13) -> 24 , 0_1(13) -> 45 , 0_1(13) -> 47 , 0_1(13) -> 67 , 0_1(13) -> 69 , 0_2(37) -> 21 , 0_2(37) -> 23 , s_0(2) -> 2 , s_0(2) -> 10 , s_0(2) -> 12 , s_0(2) -> 15 , s_0(2) -> 21 , s_0(2) -> 23 , s_0(2) -> 24 , s_0(2) -> 33 , s_0(2) -> 35 , s_0(2) -> 45 , s_0(2) -> 47 , s_0(2) -> 48 , s_0(2) -> 58 , s_0(2) -> 60 , s_0(2) -> 67 , s_0(2) -> 69 , s_0(2) -> 70 , s_0(6) -> 5 , s_0(7) -> 4 , s_0(7) -> 6 , s_0(8) -> 7 , s_0(10) -> 9 , s_0(12) -> 11 , s_1(2) -> 36 , s_1(2) -> 50 , s_1(10) -> 25 , s_1(14) -> 13 , s_1(15) -> 14 , s_1(15) -> 39 , s_1(17) -> 16 , s_1(18) -> 8 , s_1(18) -> 17 , s_1(20) -> 19 , s_1(23) -> 22 , s_1(29) -> 28 , s_1(30) -> 27 , s_1(30) -> 29 , s_1(31) -> 30 , s_1(33) -> 32 , s_1(35) -> 34 , s_1(36) -> 51 , s_2(2) -> 61 , s_2(33) -> 49 , s_2(38) -> 37 , s_2(39) -> 38 , s_2(41) -> 40 , s_2(42) -> 31 , s_2(42) -> 41 , s_2(44) -> 43 , s_2(47) -> 46 , s_2(54) -> 53 , s_2(55) -> 52 , s_2(55) -> 54 , s_2(56) -> 18 , s_2(56) -> 20 , s_2(56) -> 42 , s_2(56) -> 44 , s_2(56) -> 55 , s_2(56) -> 64 , s_2(56) -> 66 , s_2(58) -> 57 , s_2(60) -> 59 , s_3(58) -> 71 , s_3(63) -> 62 , s_3(64) -> 56 , s_3(64) -> 63 , s_3(66) -> 65 , s_3(69) -> 68 , f_1(21) -> 18 , f_1(21) -> 20 , f_1(21) -> 42 , f_1(21) -> 44 , f_1(21) -> 64 , f_1(21) -> 66 , f_2(45) -> 42 , f_2(45) -> 44 , f_3(67) -> 64 , f_3(67) -> 66 , g_1(50) -> 18 , g_1(50) -> 20 , g_1(50) -> 42 , g_1(50) -> 44 , g_1(50) -> 64 , g_1(50) -> 66 , j_0(9) -> 8 , j_1(32) -> 31 , j_2(57) -> 56 , p^#_0(2) -> 1 , p^#_0(4) -> 3 , p^#_1(27) -> 26 , c_1_0() -> 1 , c_1_0() -> 3 , c_1_1() -> 26 , g^#_0(2) -> 1 , c_4_0(3) -> 1 , c_4_1(26) -> 1} 4) { j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1)))))))))))) , p^#(s(x1)) -> c_1()} The usable rules for this path are the following: { p(0(x1)) -> 0(s(s(p(x1)))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1)))))))))))) , p^#(s(x1)) -> c_1()} Details: We apply the weight gap principle, strictly orienting the rules { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] j(x1) = [1] x1 + [4] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] j^#(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(s(x1)) -> c_1()} and weakly orienting the rules { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(s(x1)) -> c_1()} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] j(x1) = [1] x1 + [2] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [8] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] j^#(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))} and weakly orienting the rules { p^#(s(x1)) -> c_1() , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] j(x1) = [1] x1 + [2] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] j^#(x1) = [1] x1 + [9] c_5(x1) = [1] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))} and weakly orienting the rules { j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1)))))))))))) , p^#(s(x1)) -> c_1() , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] j(x1) = [1] x1 + [8] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] j^#(x1) = [1] x1 + [9] c_5(x1) = [1] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))} and weakly orienting the rules { j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1)))))))))))) , p^#(s(x1)) -> c_1() , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [1] g(x1) = [1] x1 + [14] j(x1) = [1] x1 + [8] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] j^#(x1) = [1] x1 + [9] c_5(x1) = [1] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , f(s(x1)) -> p(s(g(p(s(s(x1))))))} Weak Rules: { g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1)))))))))))) , p^#(s(x1)) -> c_1() , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , f(s(x1)) -> p(s(g(p(s(s(x1))))))} Weak Rules: { g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1)))))))))))) , p^#(s(x1)) -> c_1() , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { p_0(2) -> 9 , p_0(2) -> 11 , p_0(2) -> 12 , p_0(7) -> 6 , p_0(10) -> 9 , p_0(12) -> 9 , p_0(12) -> 11 , p_1(2) -> 15 , p_1(2) -> 22 , p_1(2) -> 24 , p_1(2) -> 43 , p_1(2) -> 45 , p_1(13) -> 15 , p_1(20) -> 19 , p_1(23) -> 22 , p_1(25) -> 22 , p_1(25) -> 24 , p_1(25) -> 43 , p_1(25) -> 45 , p_1(26) -> 25 , p_1(26) -> 36 , p_1(26) -> 46 , p_1(27) -> 6 , p_1(27) -> 8 , p_1(27) -> 19 , p_1(27) -> 21 , p_1(27) -> 28 , p_1(27) -> 40 , p_1(27) -> 42 , p_1(30) -> 29 , p_1(31) -> 27 , p_1(32) -> 6 , p_1(32) -> 8 , p_1(32) -> 19 , p_1(32) -> 21 , p_1(32) -> 28 , p_1(32) -> 40 , p_1(32) -> 42 , p_1(35) -> 46 , p_1(36) -> 43 , p_1(36) -> 45 , p_1(37) -> 36 , p_1(37) -> 46 , p_1(38) -> 34 , p_1(41) -> 40 , p_1(44) -> 43 , p_1(46) -> 43 , p_1(46) -> 45 , 0_0(2) -> 2 , 0_0(2) -> 9 , 0_0(2) -> 11 , 0_0(2) -> 12 , 0_0(2) -> 15 , 0_0(2) -> 22 , 0_0(2) -> 24 , 0_0(2) -> 25 , 0_0(2) -> 36 , 0_0(2) -> 43 , 0_0(2) -> 45 , 0_0(2) -> 46 , 0_1(13) -> 9 , 0_1(13) -> 11 , 0_1(13) -> 12 , 0_1(13) -> 15 , 0_1(13) -> 22 , 0_1(13) -> 24 , 0_1(15) -> 43 , 0_1(15) -> 45 , s_0(2) -> 2 , s_0(2) -> 9 , s_0(2) -> 11 , s_0(2) -> 12 , s_0(2) -> 15 , s_0(2) -> 22 , s_0(2) -> 24 , s_0(2) -> 25 , s_0(2) -> 36 , s_0(2) -> 43 , s_0(2) -> 45 , s_0(2) -> 46 , s_0(5) -> 4 , s_0(6) -> 5 , s_0(8) -> 7 , s_0(11) -> 10 , s_1(2) -> 26 , s_1(2) -> 29 , s_1(14) -> 13 , s_1(15) -> 14 , s_1(15) -> 15 , s_1(18) -> 17 , s_1(19) -> 18 , s_1(21) -> 20 , s_1(24) -> 23 , s_1(25) -> 37 , s_1(26) -> 30 , s_1(28) -> 27 , s_1(32) -> 31 , s_1(33) -> 27 , s_1(33) -> 32 , s_1(34) -> 6 , s_1(34) -> 8 , s_1(34) -> 19 , s_1(34) -> 21 , s_1(34) -> 28 , s_1(34) -> 33 , s_1(34) -> 40 , s_1(34) -> 42 , s_1(36) -> 35 , s_1(39) -> 38 , s_1(40) -> 34 , s_1(40) -> 39 , s_1(42) -> 41 , s_1(45) -> 44 , f_0(9) -> 6 , f_0(9) -> 8 , f_1(22) -> 19 , f_1(22) -> 21 , f_1(43) -> 40 , f_1(43) -> 42 , g_1(29) -> 6 , g_1(29) -> 8 , g_1(29) -> 19 , g_1(29) -> 21 , g_1(29) -> 28 , g_1(29) -> 40 , g_1(29) -> 42 , j_1(35) -> 34 , p^#_0(2) -> 1 , p^#_0(4) -> 3 , p^#_1(17) -> 16 , c_1_0() -> 1 , c_1_0() -> 3 , c_1_1() -> 16 , j^#_0(2) -> 1 , c_5_0(3) -> 1 , c_5_1(16) -> 1} 5) { f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1))))))) , p^#(s(x1)) -> c_1()} The usable rules for this path are the following: { p(0(x1)) -> 0(s(s(p(x1)))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , f(s(x1)) -> p(s(g(p(s(s(x1))))))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1))))))) , p^#(s(x1)) -> c_1()} Details: We apply the weight gap principle, strictly orienting the rules { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [1] j(x1) = [1] x1 + [0] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [1] g^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(s(x1)) -> c_1()} and weakly orienting the rules { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(s(x1)) -> c_1()} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [1] j(x1) = [1] x1 + [0] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [8] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] g^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))} and weakly orienting the rules { p^#(s(x1)) -> c_1() , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [1] j(x1) = [1] x1 + [0] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [1] g^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f(s(x1)) -> p(s(g(p(s(s(x1))))))} and weakly orienting the rules { f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1))))))) , p^#(s(x1)) -> c_1() , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f(s(x1)) -> p(s(g(p(s(s(x1))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [12] g(x1) = [1] x1 + [1] j(x1) = [1] x1 + [0] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [3] g^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))} and weakly orienting the rules { f(s(x1)) -> p(s(g(p(s(s(x1)))))) , f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1))))))) , p^#(s(x1)) -> c_1() , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [3] g(x1) = [1] x1 + [1] j(x1) = [1] x1 + [12] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [5] c_3(x1) = [1] x1 + [1] g^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))} Weak Rules: { j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1))))))) , p^#(s(x1)) -> c_1() , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))} Weak Rules: { j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1))))))) , p^#(s(x1)) -> c_1() , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { p_0(2) -> 6 , p_1(2) -> 9 , p_1(2) -> 25 , p_1(2) -> 27 , p_1(10) -> 5 , p_1(11) -> 10 , p_1(12) -> 5 , p_1(15) -> 28 , p_1(16) -> 25 , p_1(16) -> 27 , p_1(17) -> 16 , p_1(17) -> 28 , p_1(17) -> 52 , p_1(18) -> 25 , p_1(18) -> 27 , p_1(19) -> 16 , p_1(19) -> 18 , p_1(19) -> 28 , p_1(19) -> 52 , p_1(20) -> 14 , p_1(23) -> 22 , p_1(26) -> 25 , p_1(28) -> 25 , p_1(28) -> 27 , p_1(30) -> 22 , p_1(30) -> 24 , p_1(30) -> 46 , p_1(30) -> 48 , p_1(30) -> 56 , p_1(30) -> 58 , p_1(33) -> 32 , p_2(2) -> 49 , p_2(2) -> 51 , p_2(2) -> 59 , p_2(2) -> 61 , p_2(16) -> 49 , p_2(16) -> 51 , p_2(18) -> 49 , p_2(18) -> 51 , p_2(34) -> 22 , p_2(34) -> 24 , p_2(34) -> 31 , p_2(34) -> 46 , p_2(34) -> 48 , p_2(34) -> 56 , p_2(34) -> 58 , p_2(35) -> 34 , p_2(36) -> 22 , p_2(36) -> 24 , p_2(36) -> 31 , p_2(36) -> 46 , p_2(36) -> 48 , p_2(36) -> 56 , p_2(36) -> 58 , p_2(39) -> 62 , p_2(40) -> 59 , p_2(40) -> 61 , p_2(41) -> 40 , p_2(41) -> 62 , p_2(42) -> 59 , p_2(42) -> 61 , p_2(43) -> 40 , p_2(43) -> 42 , p_2(43) -> 62 , p_2(44) -> 14 , p_2(47) -> 46 , p_2(50) -> 49 , p_2(52) -> 49 , p_2(52) -> 51 , p_2(53) -> 52 , p_2(54) -> 38 , p_2(57) -> 56 , p_2(60) -> 59 , p_2(62) -> 59 , p_2(62) -> 61 , 0_0(2) -> 2 , 0_0(2) -> 6 , 0_0(2) -> 9 , 0_0(2) -> 16 , 0_0(2) -> 18 , 0_0(2) -> 25 , 0_0(2) -> 27 , 0_0(2) -> 28 , 0_0(2) -> 40 , 0_0(2) -> 42 , 0_0(2) -> 49 , 0_0(2) -> 51 , 0_0(2) -> 52 , 0_0(2) -> 59 , 0_0(2) -> 61 , 0_0(2) -> 62 , 0_1(7) -> 6 , 0_1(7) -> 9 , 0_1(7) -> 25 , 0_1(7) -> 27 , 0_1(7) -> 49 , 0_1(7) -> 51 , 0_1(7) -> 59 , 0_1(7) -> 61 , s_0(2) -> 2 , s_0(2) -> 6 , s_0(2) -> 9 , s_0(2) -> 16 , s_0(2) -> 18 , s_0(2) -> 25 , s_0(2) -> 27 , s_0(2) -> 28 , s_0(2) -> 40 , s_0(2) -> 42 , s_0(2) -> 49 , s_0(2) -> 51 , s_0(2) -> 52 , s_0(2) -> 59 , s_0(2) -> 61 , s_0(2) -> 62 , s_0(5) -> 4 , s_1(2) -> 19 , s_1(2) -> 32 , s_1(8) -> 7 , s_1(9) -> 8 , s_1(12) -> 11 , s_1(13) -> 10 , s_1(13) -> 12 , s_1(14) -> 5 , s_1(14) -> 13 , s_1(16) -> 15 , s_1(18) -> 17 , s_1(19) -> 33 , s_1(21) -> 20 , s_1(22) -> 14 , s_1(22) -> 21 , s_1(24) -> 23 , s_1(27) -> 26 , s_1(31) -> 30 , s_2(2) -> 43 , s_2(16) -> 53 , s_2(36) -> 35 , s_2(37) -> 34 , s_2(37) -> 36 , s_2(38) -> 22 , s_2(38) -> 24 , s_2(38) -> 31 , s_2(38) -> 37 , s_2(38) -> 46 , s_2(38) -> 48 , s_2(38) -> 56 , s_2(38) -> 58 , s_2(40) -> 39 , s_2(42) -> 41 , s_2(45) -> 44 , s_2(46) -> 14 , s_2(46) -> 45 , s_2(48) -> 47 , s_2(51) -> 50 , s_2(55) -> 54 , s_2(56) -> 38 , s_2(56) -> 55 , s_2(58) -> 57 , s_2(61) -> 60 , f_1(25) -> 22 , f_1(25) -> 24 , f_2(49) -> 46 , f_2(49) -> 48 , f_2(59) -> 56 , f_2(59) -> 58 , g_0(6) -> 5 , g_1(32) -> 22 , g_1(32) -> 24 , g_1(32) -> 31 , g_1(32) -> 46 , g_1(32) -> 48 , g_1(32) -> 56 , g_1(32) -> 58 , j_1(15) -> 14 , j_2(39) -> 38 , p^#_0(2) -> 1 , p^#_0(4) -> 3 , p^#_1(30) -> 29 , c_1_0() -> 1 , c_1_0() -> 3 , c_1_1() -> 29 , f^#_0(2) -> 1 , c_3_0(3) -> 1 , c_3_1(29) -> 1} 6) {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))} The usable rules for this path are the following: { p(0(x1)) -> 0(s(s(p(x1)))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))} Details: We apply the weight gap principle, strictly orienting the rules { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [2] g(x1) = [1] x1 + [0] j(x1) = [1] x1 + [1] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [1] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))} and weakly orienting the rules { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] j(x1) = [1] x1 + [1] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [9] c_4(x1) = [1] x1 + [1] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f(s(x1)) -> p(s(g(p(s(s(x1))))))} and weakly orienting the rules { g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f(s(x1)) -> p(s(g(p(s(s(x1))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [4] g(x1) = [1] x1 + [0] j(x1) = [1] x1 + [1] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [5] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [13] c_4(x1) = [1] x1 + [3] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))} and weakly orienting the rules { f(s(x1)) -> p(s(g(p(s(s(x1)))))) , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [8] g(x1) = [1] x1 + [6] j(x1) = [1] x1 + [1] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [9] c_4(x1) = [1] x1 + [1] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))} Weak Rules: { g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))} Weak Rules: { g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1)))))))))))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { p_0(2) -> 10 , p_0(2) -> 12 , p_0(2) -> 24 , p_0(5) -> 4 , p_0(11) -> 10 , p_0(11) -> 24 , p_1(2) -> 15 , p_1(2) -> 21 , p_1(2) -> 23 , p_1(10) -> 21 , p_1(10) -> 23 , p_1(12) -> 21 , p_1(12) -> 23 , p_1(16) -> 8 , p_1(19) -> 18 , p_1(19) -> 20 , p_1(19) -> 42 , p_1(19) -> 44 , p_1(19) -> 64 , p_1(19) -> 66 , p_1(22) -> 21 , p_1(24) -> 21 , p_1(24) -> 23 , p_1(25) -> 24 , p_1(28) -> 27 , p_1(34) -> 33 , p_1(34) -> 48 , p_1(36) -> 33 , p_1(36) -> 35 , p_1(36) -> 48 , p_1(51) -> 50 , p_2(2) -> 45 , p_2(2) -> 47 , p_2(13) -> 39 , p_2(33) -> 45 , p_2(33) -> 47 , p_2(35) -> 45 , p_2(35) -> 47 , p_2(40) -> 31 , p_2(43) -> 42 , p_2(46) -> 45 , p_2(48) -> 45 , p_2(48) -> 47 , p_2(49) -> 48 , p_2(52) -> 18 , p_2(52) -> 20 , p_2(52) -> 42 , p_2(52) -> 44 , p_2(52) -> 64 , p_2(52) -> 66 , p_2(53) -> 52 , p_2(54) -> 18 , p_2(54) -> 20 , p_2(54) -> 42 , p_2(54) -> 44 , p_2(54) -> 64 , p_2(54) -> 66 , p_2(59) -> 58 , p_2(59) -> 70 , p_2(61) -> 58 , p_2(61) -> 60 , p_2(61) -> 70 , p_3(2) -> 67 , p_3(2) -> 69 , p_3(58) -> 67 , p_3(58) -> 69 , p_3(60) -> 67 , p_3(60) -> 69 , p_3(62) -> 56 , p_3(65) -> 64 , p_3(68) -> 67 , p_3(70) -> 67 , p_3(70) -> 69 , p_3(71) -> 70 , 0_0(2) -> 2 , 0_0(2) -> 10 , 0_0(2) -> 12 , 0_0(2) -> 15 , 0_0(2) -> 21 , 0_0(2) -> 23 , 0_0(2) -> 24 , 0_0(2) -> 33 , 0_0(2) -> 35 , 0_0(2) -> 45 , 0_0(2) -> 47 , 0_0(2) -> 48 , 0_0(2) -> 58 , 0_0(2) -> 60 , 0_0(2) -> 67 , 0_0(2) -> 69 , 0_0(2) -> 70 , 0_1(13) -> 10 , 0_1(13) -> 12 , 0_1(13) -> 15 , 0_1(13) -> 21 , 0_1(13) -> 23 , 0_1(13) -> 24 , 0_1(13) -> 45 , 0_1(13) -> 47 , 0_1(13) -> 67 , 0_1(13) -> 69 , 0_2(37) -> 21 , 0_2(37) -> 23 , s_0(2) -> 2 , s_0(2) -> 10 , s_0(2) -> 12 , s_0(2) -> 15 , s_0(2) -> 21 , s_0(2) -> 23 , s_0(2) -> 24 , s_0(2) -> 33 , s_0(2) -> 35 , s_0(2) -> 45 , s_0(2) -> 47 , s_0(2) -> 48 , s_0(2) -> 58 , s_0(2) -> 60 , s_0(2) -> 67 , s_0(2) -> 69 , s_0(2) -> 70 , s_0(6) -> 5 , s_0(7) -> 4 , s_0(7) -> 6 , s_0(8) -> 7 , s_0(10) -> 9 , s_0(12) -> 11 , s_1(2) -> 36 , s_1(2) -> 50 , s_1(10) -> 25 , s_1(14) -> 13 , s_1(15) -> 14 , s_1(15) -> 39 , s_1(17) -> 16 , s_1(18) -> 8 , s_1(18) -> 17 , s_1(20) -> 19 , s_1(23) -> 22 , s_1(29) -> 28 , s_1(30) -> 27 , s_1(30) -> 29 , s_1(31) -> 30 , s_1(33) -> 32 , s_1(35) -> 34 , s_1(36) -> 51 , s_2(2) -> 61 , s_2(33) -> 49 , s_2(38) -> 37 , s_2(39) -> 38 , s_2(41) -> 40 , s_2(42) -> 31 , s_2(42) -> 41 , s_2(44) -> 43 , s_2(47) -> 46 , s_2(54) -> 53 , s_2(55) -> 52 , s_2(55) -> 54 , s_2(56) -> 18 , s_2(56) -> 20 , s_2(56) -> 42 , s_2(56) -> 44 , s_2(56) -> 55 , s_2(56) -> 64 , s_2(56) -> 66 , s_2(58) -> 57 , s_2(60) -> 59 , s_3(58) -> 71 , s_3(63) -> 62 , s_3(64) -> 56 , s_3(64) -> 63 , s_3(66) -> 65 , s_3(69) -> 68 , f_1(21) -> 18 , f_1(21) -> 20 , f_1(21) -> 42 , f_1(21) -> 44 , f_1(21) -> 64 , f_1(21) -> 66 , f_2(45) -> 42 , f_2(45) -> 44 , f_3(67) -> 64 , f_3(67) -> 66 , g_1(50) -> 18 , g_1(50) -> 20 , g_1(50) -> 42 , g_1(50) -> 44 , g_1(50) -> 64 , g_1(50) -> 66 , j_0(9) -> 8 , j_1(32) -> 31 , j_2(57) -> 56 , p^#_0(2) -> 1 , p^#_0(4) -> 3 , p^#_1(27) -> 26 , g^#_0(2) -> 1 , c_4_0(3) -> 1 , c_4_1(26) -> 1} 7) {j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))} The usable rules for this path are the following: { p(0(x1)) -> 0(s(s(p(x1)))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))} Details: We apply the weight gap principle, strictly orienting the rules { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] j(x1) = [1] x1 + [0] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] j^#(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))} and weakly orienting the rules { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] j(x1) = [1] x1 + [0] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] j^#(x1) = [1] x1 + [9] c_5(x1) = [1] x1 + [1] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))} and weakly orienting the rules { j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1)))))))))))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [1] g(x1) = [1] x1 + [7] j(x1) = [1] x1 + [0] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] j^#(x1) = [1] x1 + [5] c_5(x1) = [1] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))} and weakly orienting the rules { g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1)))))))))))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [1] g(x1) = [1] x1 + [11] j(x1) = [1] x1 + [7] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] j^#(x1) = [1] x1 + [9] c_5(x1) = [1] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , f(s(x1)) -> p(s(g(p(s(s(x1))))))} Weak Rules: { j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1)))))))))))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , f(s(x1)) -> p(s(g(p(s(s(x1))))))} Weak Rules: { j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1)))))))))))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { p_0(2) -> 9 , p_0(2) -> 11 , p_0(2) -> 12 , p_0(7) -> 6 , p_0(10) -> 9 , p_0(12) -> 9 , p_0(12) -> 11 , p_1(2) -> 15 , p_1(2) -> 22 , p_1(2) -> 24 , p_1(2) -> 43 , p_1(2) -> 45 , p_1(13) -> 15 , p_1(20) -> 19 , p_1(23) -> 22 , p_1(25) -> 22 , p_1(25) -> 24 , p_1(25) -> 43 , p_1(25) -> 45 , p_1(26) -> 25 , p_1(26) -> 36 , p_1(26) -> 46 , p_1(27) -> 6 , p_1(27) -> 8 , p_1(27) -> 19 , p_1(27) -> 21 , p_1(27) -> 28 , p_1(27) -> 40 , p_1(27) -> 42 , p_1(30) -> 29 , p_1(31) -> 27 , p_1(32) -> 6 , p_1(32) -> 8 , p_1(32) -> 19 , p_1(32) -> 21 , p_1(32) -> 28 , p_1(32) -> 40 , p_1(32) -> 42 , p_1(35) -> 46 , p_1(36) -> 43 , p_1(36) -> 45 , p_1(37) -> 36 , p_1(37) -> 46 , p_1(38) -> 34 , p_1(41) -> 40 , p_1(44) -> 43 , p_1(46) -> 43 , p_1(46) -> 45 , 0_0(2) -> 2 , 0_0(2) -> 9 , 0_0(2) -> 11 , 0_0(2) -> 12 , 0_0(2) -> 15 , 0_0(2) -> 22 , 0_0(2) -> 24 , 0_0(2) -> 25 , 0_0(2) -> 36 , 0_0(2) -> 43 , 0_0(2) -> 45 , 0_0(2) -> 46 , 0_1(13) -> 9 , 0_1(13) -> 11 , 0_1(13) -> 12 , 0_1(13) -> 15 , 0_1(13) -> 22 , 0_1(13) -> 24 , 0_1(15) -> 43 , 0_1(15) -> 45 , s_0(2) -> 2 , s_0(2) -> 9 , s_0(2) -> 11 , s_0(2) -> 12 , s_0(2) -> 15 , s_0(2) -> 22 , s_0(2) -> 24 , s_0(2) -> 25 , s_0(2) -> 36 , s_0(2) -> 43 , s_0(2) -> 45 , s_0(2) -> 46 , s_0(5) -> 4 , s_0(6) -> 5 , s_0(8) -> 7 , s_0(11) -> 10 , s_1(2) -> 26 , s_1(2) -> 29 , s_1(14) -> 13 , s_1(15) -> 14 , s_1(15) -> 15 , s_1(18) -> 17 , s_1(19) -> 18 , s_1(21) -> 20 , s_1(24) -> 23 , s_1(25) -> 37 , s_1(26) -> 30 , s_1(28) -> 27 , s_1(32) -> 31 , s_1(33) -> 27 , s_1(33) -> 32 , s_1(34) -> 6 , s_1(34) -> 8 , s_1(34) -> 19 , s_1(34) -> 21 , s_1(34) -> 28 , s_1(34) -> 33 , s_1(34) -> 40 , s_1(34) -> 42 , s_1(36) -> 35 , s_1(39) -> 38 , s_1(40) -> 34 , s_1(40) -> 39 , s_1(42) -> 41 , s_1(45) -> 44 , f_0(9) -> 6 , f_0(9) -> 8 , f_1(22) -> 19 , f_1(22) -> 21 , f_1(43) -> 40 , f_1(43) -> 42 , g_1(29) -> 6 , g_1(29) -> 8 , g_1(29) -> 19 , g_1(29) -> 21 , g_1(29) -> 28 , g_1(29) -> 40 , g_1(29) -> 42 , j_1(35) -> 34 , p^#_0(2) -> 1 , p^#_0(4) -> 3 , p^#_1(17) -> 16 , j^#_0(2) -> 1 , c_5_0(3) -> 1 , c_5_1(16) -> 1} 8) {f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))} The usable rules for this path are the following: { p(0(x1)) -> 0(s(s(p(x1)))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , f(s(x1)) -> p(s(g(p(s(s(x1))))))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1))))))))))) , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))} Details: We apply the weight gap principle, strictly orienting the rules { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [1] j(x1) = [1] x1 + [2] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [1] g^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))} and weakly orienting the rules { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [1] g(x1) = [1] x1 + [1] j(x1) = [1] x1 + [0] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [1] g^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f(s(x1)) -> p(s(g(p(s(s(x1))))))} and weakly orienting the rules { f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1))))))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f(s(x1)) -> p(s(g(p(s(s(x1))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [8] g(x1) = [1] x1 + [1] j(x1) = [1] x1 + [0] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [1] g^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))} and weakly orienting the rules { f(s(x1)) -> p(s(g(p(s(s(x1)))))) , f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1))))))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [1] x1 + [3] g(x1) = [1] x1 + [1] j(x1) = [1] x1 + [12] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [0] g^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))} Weak Rules: { j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1))))))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))} Weak Rules: { j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1))))))))))) , f(s(x1)) -> p(s(g(p(s(s(x1)))))) , f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1))))))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { p_0(2) -> 6 , p_1(2) -> 9 , p_1(2) -> 25 , p_1(2) -> 27 , p_1(10) -> 5 , p_1(11) -> 10 , p_1(12) -> 5 , p_1(15) -> 28 , p_1(16) -> 25 , p_1(16) -> 27 , p_1(17) -> 16 , p_1(17) -> 28 , p_1(17) -> 52 , p_1(18) -> 25 , p_1(18) -> 27 , p_1(19) -> 16 , p_1(19) -> 18 , p_1(19) -> 28 , p_1(19) -> 52 , p_1(20) -> 14 , p_1(23) -> 22 , p_1(26) -> 25 , p_1(28) -> 25 , p_1(28) -> 27 , p_1(30) -> 22 , p_1(30) -> 24 , p_1(30) -> 46 , p_1(30) -> 48 , p_1(30) -> 56 , p_1(30) -> 58 , p_1(33) -> 32 , p_2(2) -> 49 , p_2(2) -> 51 , p_2(2) -> 59 , p_2(2) -> 61 , p_2(16) -> 49 , p_2(16) -> 51 , p_2(18) -> 49 , p_2(18) -> 51 , p_2(34) -> 22 , p_2(34) -> 24 , p_2(34) -> 31 , p_2(34) -> 46 , p_2(34) -> 48 , p_2(34) -> 56 , p_2(34) -> 58 , p_2(35) -> 34 , p_2(36) -> 22 , p_2(36) -> 24 , p_2(36) -> 31 , p_2(36) -> 46 , p_2(36) -> 48 , p_2(36) -> 56 , p_2(36) -> 58 , p_2(39) -> 62 , p_2(40) -> 59 , p_2(40) -> 61 , p_2(41) -> 40 , p_2(41) -> 62 , p_2(42) -> 59 , p_2(42) -> 61 , p_2(43) -> 40 , p_2(43) -> 42 , p_2(43) -> 62 , p_2(44) -> 14 , p_2(47) -> 46 , p_2(50) -> 49 , p_2(52) -> 49 , p_2(52) -> 51 , p_2(53) -> 52 , p_2(54) -> 38 , p_2(57) -> 56 , p_2(60) -> 59 , p_2(62) -> 59 , p_2(62) -> 61 , 0_0(2) -> 2 , 0_0(2) -> 6 , 0_0(2) -> 9 , 0_0(2) -> 16 , 0_0(2) -> 18 , 0_0(2) -> 25 , 0_0(2) -> 27 , 0_0(2) -> 28 , 0_0(2) -> 40 , 0_0(2) -> 42 , 0_0(2) -> 49 , 0_0(2) -> 51 , 0_0(2) -> 52 , 0_0(2) -> 59 , 0_0(2) -> 61 , 0_0(2) -> 62 , 0_1(7) -> 6 , 0_1(7) -> 9 , 0_1(7) -> 25 , 0_1(7) -> 27 , 0_1(7) -> 49 , 0_1(7) -> 51 , 0_1(7) -> 59 , 0_1(7) -> 61 , s_0(2) -> 2 , s_0(2) -> 6 , s_0(2) -> 9 , s_0(2) -> 16 , s_0(2) -> 18 , s_0(2) -> 25 , s_0(2) -> 27 , s_0(2) -> 28 , s_0(2) -> 40 , s_0(2) -> 42 , s_0(2) -> 49 , s_0(2) -> 51 , s_0(2) -> 52 , s_0(2) -> 59 , s_0(2) -> 61 , s_0(2) -> 62 , s_0(5) -> 4 , s_1(2) -> 19 , s_1(2) -> 32 , s_1(8) -> 7 , s_1(9) -> 8 , s_1(12) -> 11 , s_1(13) -> 10 , s_1(13) -> 12 , s_1(14) -> 5 , s_1(14) -> 13 , s_1(16) -> 15 , s_1(18) -> 17 , s_1(19) -> 33 , s_1(21) -> 20 , s_1(22) -> 14 , s_1(22) -> 21 , s_1(24) -> 23 , s_1(27) -> 26 , s_1(31) -> 30 , s_2(2) -> 43 , s_2(16) -> 53 , s_2(36) -> 35 , s_2(37) -> 34 , s_2(37) -> 36 , s_2(38) -> 22 , s_2(38) -> 24 , s_2(38) -> 31 , s_2(38) -> 37 , s_2(38) -> 46 , s_2(38) -> 48 , s_2(38) -> 56 , s_2(38) -> 58 , s_2(40) -> 39 , s_2(42) -> 41 , s_2(45) -> 44 , s_2(46) -> 14 , s_2(46) -> 45 , s_2(48) -> 47 , s_2(51) -> 50 , s_2(55) -> 54 , s_2(56) -> 38 , s_2(56) -> 55 , s_2(58) -> 57 , s_2(61) -> 60 , f_1(25) -> 22 , f_1(25) -> 24 , f_2(49) -> 46 , f_2(49) -> 48 , f_2(59) -> 56 , f_2(59) -> 58 , g_0(6) -> 5 , g_1(32) -> 22 , g_1(32) -> 24 , g_1(32) -> 31 , g_1(32) -> 46 , g_1(32) -> 48 , g_1(32) -> 56 , g_1(32) -> 58 , j_1(15) -> 14 , j_2(39) -> 38 , p^#_0(2) -> 1 , p^#_0(4) -> 3 , p^#_1(30) -> 29 , f^#_0(2) -> 1 , c_3_0(3) -> 1 , c_3_1(29) -> 1} 9) { half^#(0(x1)) -> c_6(half^#(p(s(p(s(x1)))))) , half^#(s(s(x1))) -> c_7(half^#(p(p(s(s(x1))))))} The usable rules for this path are the following: { p(0(x1)) -> 0(s(s(p(x1)))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1) , half^#(0(x1)) -> c_6(half^#(p(s(p(s(x1)))))) , half^#(s(s(x1))) -> c_7(half^#(p(p(s(s(x1))))))} Details: We apply the weight gap principle, strictly orienting the rules { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: Interpretation Functions: p(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] f(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] j(x1) = [0] x1 + [0] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [1] x1 + [3] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {half^#(0(x1)) -> c_6(half^#(p(s(p(s(x1))))))} and weakly orienting the rules { p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {half^#(0(x1)) -> c_6(half^#(p(s(p(s(x1))))))} Details: Interpretation Functions: p(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] f(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] j(x1) = [0] x1 + [0] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [1] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , half^#(s(s(x1))) -> c_7(half^#(p(p(s(s(x1))))))} Weak Rules: { half^#(0(x1)) -> c_6(half^#(p(s(p(s(x1)))))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { p(0(x1)) -> 0(s(s(p(x1)))) , half^#(s(s(x1))) -> c_7(half^#(p(p(s(s(x1))))))} Weak Rules: { half^#(0(x1)) -> c_6(half^#(p(s(p(s(x1)))))) , p(s(x1)) -> x1 , p(p(s(x1))) -> p(x1)} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { p_0(3) -> 21 , p_0(3) -> 23 , p_0(22) -> 21 , p_1(26) -> 25 , p_1(27) -> 26 , p_1(28) -> 25 , p_1(28) -> 30 , p_1(28) -> 32 , p_1(31) -> 30 , 0_0(2) -> 2 , 0_0(2) -> 21 , 0_0(2) -> 23 , 0_0(2) -> 25 , 0_0(2) -> 30 , 0_0(2) -> 32 , 0_0(3) -> 2 , 0_0(3) -> 21 , 0_0(3) -> 23 , 0_0(3) -> 25 , 0_0(3) -> 30 , 0_0(3) -> 32 , s_0(2) -> 3 , s_0(2) -> 21 , s_0(2) -> 23 , s_0(2) -> 25 , s_0(2) -> 30 , s_0(2) -> 32 , s_0(3) -> 3 , s_0(3) -> 21 , s_0(3) -> 23 , s_0(3) -> 25 , s_0(3) -> 30 , s_0(3) -> 32 , s_0(23) -> 22 , s_1(2) -> 26 , s_1(2) -> 28 , s_1(3) -> 26 , s_1(3) -> 28 , s_1(28) -> 27 , s_1(32) -> 31 , half^#_0(2) -> 19 , half^#_0(3) -> 19 , half^#_0(21) -> 20 , half^#_1(25) -> 24 , half^#_1(30) -> 29 , c_6_0(20) -> 19 , c_6_1(29) -> 19 , c_6_1(29) -> 20 , c_6_1(29) -> 24 , c_6_1(29) -> 29 , c_7_1(24) -> 19 , c_7_1(24) -> 20 , c_7_1(24) -> 24 , c_7_1(24) -> 29} 10) {rd^#(0(x1)) -> c_8(rd^#(x1))} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: p(x1) = [0] x1 + [0] 0(x1) = [0] x1 + [0] s(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] j(x1) = [0] x1 + [0] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {rd^#(0(x1)) -> c_8(rd^#(x1))} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {rd^#(0(x1)) -> c_8(rd^#(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {rd^#(0(x1)) -> c_8(rd^#(x1))} Details: Interpretation Functions: p(x1) = [0] x1 + [0] 0(x1) = [1] x1 + [8] s(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] j(x1) = [0] x1 + [0] half(x1) = [0] x1 + [0] rd(x1) = [0] x1 + [0] p^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c_1() = [0] c_2(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] j^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] half^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] rd^#(x1) = [1] x1 + [1] c_8(x1) = [1] x1 + [3] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {rd^#(0(x1)) -> c_8(rd^#(x1))} Details: The given problem does not contain any strict rules