'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  p(0(x1)) -> 0(s(s(p(x1))))
     , p(s(x1)) -> x1
     , p(p(s(x1))) -> p(x1)
     , f(s(x1)) -> p(s(g(p(s(s(x1))))))
     , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
     , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
     , half(0(x1)) -> 0(s(s(half(p(s(p(s(x1))))))))
     , half(s(s(x1))) -> s(half(p(p(s(s(x1))))))
     , rd(0(x1)) -> 0(s(0(0(0(0(s(0(rd(x1)))))))))}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  p^#(0(x1)) -> c_0(p^#(x1))
    , p^#(s(x1)) -> c_1()
    , p^#(p(s(x1))) -> c_2(p^#(x1))
    , f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))
    , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
    , j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))
    , half^#(0(x1)) -> c_6(half^#(p(s(p(s(x1))))))
    , half^#(s(s(x1))) -> c_7(half^#(p(p(s(s(x1))))))
    , rd^#(0(x1)) -> c_8(rd^#(x1))}
  
  The usable rules are:
   {  p(0(x1)) -> 0(s(s(p(x1))))
    , p(s(x1)) -> x1
    , p(p(s(x1))) -> p(x1)
    , f(s(x1)) -> p(s(g(p(s(s(x1))))))
    , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
    , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))}
  
  The estimated dependency graph contains the following edges:
   {p^#(0(x1)) -> c_0(p^#(x1))}
     ==> {p^#(p(s(x1))) -> c_2(p^#(x1))}
   {p^#(0(x1)) -> c_0(p^#(x1))}
     ==> {p^#(s(x1)) -> c_1()}
   {p^#(0(x1)) -> c_0(p^#(x1))}
     ==> {p^#(0(x1)) -> c_0(p^#(x1))}
   {p^#(p(s(x1))) -> c_2(p^#(x1))}
     ==> {p^#(p(s(x1))) -> c_2(p^#(x1))}
   {p^#(p(s(x1))) -> c_2(p^#(x1))}
     ==> {p^#(s(x1)) -> c_1()}
   {p^#(p(s(x1))) -> c_2(p^#(x1))}
     ==> {p^#(0(x1)) -> c_0(p^#(x1))}
   {f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))}
     ==> {p^#(s(x1)) -> c_1()}
   {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))}
     ==> {p^#(p(s(x1))) -> c_2(p^#(x1))}
   {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))}
     ==> {p^#(s(x1)) -> c_1()}
   {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))}
     ==> {p^#(0(x1)) -> c_0(p^#(x1))}
   {j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))}
     ==> {p^#(s(x1)) -> c_1()}
   {half^#(0(x1)) -> c_6(half^#(p(s(p(s(x1))))))}
     ==> {half^#(s(s(x1))) -> c_7(half^#(p(p(s(s(x1))))))}
   {half^#(0(x1)) -> c_6(half^#(p(s(p(s(x1))))))}
     ==> {half^#(0(x1)) -> c_6(half^#(p(s(p(s(x1))))))}
   {half^#(s(s(x1))) -> c_7(half^#(p(p(s(s(x1))))))}
     ==> {half^#(s(s(x1))) -> c_7(half^#(p(p(s(s(x1))))))}
   {half^#(s(s(x1))) -> c_7(half^#(p(p(s(s(x1))))))}
     ==> {half^#(0(x1)) -> c_6(half^#(p(s(p(s(x1))))))}
   {rd^#(0(x1)) -> c_8(rd^#(x1))}
     ==> {rd^#(0(x1)) -> c_8(rd^#(x1))}
  
  We consider the following path(s):
   1) {  g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
       , p^#(0(x1)) -> c_0(p^#(x1))
       , p^#(p(s(x1))) -> c_2(p^#(x1))}
      
      The usable rules for this path are the following:
      {  p(0(x1)) -> 0(s(s(p(x1))))
       , p(s(x1)) -> x1
       , p(p(s(x1))) -> p(x1)
       , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
       , f(s(x1)) -> p(s(g(p(s(s(x1))))))
       , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(0(x1)) -> 0(s(s(p(x1))))
               , p(s(x1)) -> x1
               , p(p(s(x1))) -> p(x1)
               , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
               , f(s(x1)) -> p(s(g(p(s(s(x1))))))
               , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
               , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
               , p^#(0(x1)) -> c_0(p^#(x1))
               , p^#(p(s(x1))) -> c_2(p^#(x1))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(s(x1)) -> x1
               , p(p(s(x1))) -> p(x1)}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [1]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [1]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(p(s(x1))) -> c_2(p^#(x1))}
            and weakly orienting the rules
            {  p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(p(s(x1))) -> c_2(p^#(x1))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [4]
                  c_0(x1) = [1] x1 + [1]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [1]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))}
            and weakly orienting the rules
            {  p^#(p(s(x1))) -> c_2(p^#(x1))
             , p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [2]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [1]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [9]
                  c_4(x1) = [1] x1 + [1]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))}
            and weakly orienting the rules
            {  g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
             , p^#(p(s(x1))) -> c_2(p^#(x1))
             , p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [8]
                  j(x1) = [1] x1 + [1]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [4]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [1]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [9]
                  c_4(x1) = [1] x1 + [1]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f(s(x1)) -> p(s(g(p(s(s(x1))))))}
            and weakly orienting the rules
            {  g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
             , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
             , p^#(p(s(x1))) -> c_2(p^#(x1))
             , p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f(s(x1)) -> p(s(g(p(s(s(x1))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [13]
                  g(x1) = [1] x1 + [9]
                  j(x1) = [1] x1 + [5]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [3]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [1]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [15]
                  c_4(x1) = [1] x1 + [1]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(0(x1)) -> c_0(p^#(x1))}
            and weakly orienting the rules
            {  f(s(x1)) -> p(s(g(p(s(s(x1))))))
             , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
             , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
             , p^#(p(s(x1))) -> c_2(p^#(x1))
             , p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(0(x1)) -> c_0(p^#(x1))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [0]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [4]
                  c_4(x1) = [1] x1 + [1]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  p(0(x1)) -> 0(s(s(p(x1))))
                 , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))}
              Weak Rules:
                {  p^#(0(x1)) -> c_0(p^#(x1))
                 , f(s(x1)) -> p(s(g(p(s(s(x1))))))
                 , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
                 , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
                 , p^#(p(s(x1))) -> c_2(p^#(x1))
                 , p(s(x1)) -> x1
                 , p(p(s(x1))) -> p(x1)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  p(0(x1)) -> 0(s(s(p(x1))))
                   , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))}
                Weak Rules:
                  {  p^#(0(x1)) -> c_0(p^#(x1))
                   , f(s(x1)) -> p(s(g(p(s(s(x1))))))
                   , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
                   , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
                   , p^#(p(s(x1))) -> c_2(p^#(x1))
                   , p(s(x1)) -> x1
                   , p(p(s(x1))) -> p(x1)}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  p_0(2) -> 10
                 , p_0(2) -> 12
                 , p_0(2) -> 25
                 , p_0(5) -> 4
                 , p_0(11) -> 10
                 , p_0(11) -> 25
                 , p_1(2) -> 16
                 , p_1(2) -> 22
                 , p_1(2) -> 24
                 , p_1(10) -> 22
                 , p_1(10) -> 24
                 , p_1(12) -> 22
                 , p_1(12) -> 24
                 , p_1(17) -> 8
                 , p_1(20) -> 19
                 , p_1(20) -> 21
                 , p_1(20) -> 44
                 , p_1(20) -> 46
                 , p_1(20) -> 66
                 , p_1(20) -> 68
                 , p_1(23) -> 22
                 , p_1(25) -> 22
                 , p_1(25) -> 24
                 , p_1(26) -> 25
                 , p_1(29) -> 28
                 , p_1(35) -> 34
                 , p_1(35) -> 50
                 , p_1(37) -> 34
                 , p_1(37) -> 36
                 , p_1(37) -> 50
                 , p_1(53) -> 52
                 , p_2(2) -> 47
                 , p_2(2) -> 49
                 , p_2(14) -> 41
                 , p_2(34) -> 47
                 , p_2(34) -> 49
                 , p_2(36) -> 47
                 , p_2(36) -> 49
                 , p_2(42) -> 32
                 , p_2(45) -> 44
                 , p_2(48) -> 47
                 , p_2(50) -> 47
                 , p_2(50) -> 49
                 , p_2(51) -> 50
                 , p_2(54) -> 19
                 , p_2(54) -> 21
                 , p_2(54) -> 44
                 , p_2(54) -> 46
                 , p_2(54) -> 66
                 , p_2(54) -> 68
                 , p_2(55) -> 54
                 , p_2(56) -> 19
                 , p_2(56) -> 21
                 , p_2(56) -> 44
                 , p_2(56) -> 46
                 , p_2(56) -> 66
                 , p_2(56) -> 68
                 , p_2(61) -> 60
                 , p_2(61) -> 72
                 , p_2(63) -> 60
                 , p_2(63) -> 62
                 , p_2(63) -> 72
                 , p_3(2) -> 69
                 , p_3(2) -> 71
                 , p_3(60) -> 69
                 , p_3(60) -> 71
                 , p_3(62) -> 69
                 , p_3(62) -> 71
                 , p_3(64) -> 58
                 , p_3(67) -> 66
                 , p_3(70) -> 69
                 , p_3(72) -> 69
                 , p_3(72) -> 71
                 , p_3(73) -> 72
                 , 0_0(2) -> 2
                 , 0_0(2) -> 10
                 , 0_0(2) -> 12
                 , 0_0(2) -> 16
                 , 0_0(2) -> 22
                 , 0_0(2) -> 24
                 , 0_0(2) -> 25
                 , 0_0(2) -> 34
                 , 0_0(2) -> 36
                 , 0_0(2) -> 47
                 , 0_0(2) -> 49
                 , 0_0(2) -> 50
                 , 0_0(2) -> 60
                 , 0_0(2) -> 62
                 , 0_0(2) -> 69
                 , 0_0(2) -> 71
                 , 0_0(2) -> 72
                 , 0_1(14) -> 10
                 , 0_1(14) -> 12
                 , 0_1(14) -> 16
                 , 0_1(14) -> 22
                 , 0_1(14) -> 24
                 , 0_1(14) -> 25
                 , 0_1(14) -> 47
                 , 0_1(14) -> 49
                 , 0_1(14) -> 69
                 , 0_1(14) -> 71
                 , 0_2(39) -> 22
                 , 0_2(39) -> 24
                 , s_0(2) -> 2
                 , s_0(2) -> 10
                 , s_0(2) -> 12
                 , s_0(2) -> 16
                 , s_0(2) -> 22
                 , s_0(2) -> 24
                 , s_0(2) -> 25
                 , s_0(2) -> 34
                 , s_0(2) -> 36
                 , s_0(2) -> 47
                 , s_0(2) -> 49
                 , s_0(2) -> 50
                 , s_0(2) -> 60
                 , s_0(2) -> 62
                 , s_0(2) -> 69
                 , s_0(2) -> 71
                 , s_0(2) -> 72
                 , s_0(6) -> 5
                 , s_0(7) -> 4
                 , s_0(7) -> 6
                 , s_0(8) -> 7
                 , s_0(10) -> 9
                 , s_0(12) -> 11
                 , s_1(2) -> 37
                 , s_1(2) -> 52
                 , s_1(10) -> 26
                 , s_1(15) -> 14
                 , s_1(16) -> 15
                 , s_1(16) -> 41
                 , s_1(18) -> 17
                 , s_1(19) -> 8
                 , s_1(19) -> 18
                 , s_1(21) -> 20
                 , s_1(24) -> 23
                 , s_1(30) -> 29
                 , s_1(31) -> 28
                 , s_1(31) -> 30
                 , s_1(32) -> 31
                 , s_1(34) -> 33
                 , s_1(36) -> 35
                 , s_1(37) -> 53
                 , s_2(2) -> 63
                 , s_2(34) -> 51
                 , s_2(40) -> 39
                 , s_2(41) -> 40
                 , s_2(43) -> 42
                 , s_2(44) -> 32
                 , s_2(44) -> 43
                 , s_2(46) -> 45
                 , s_2(49) -> 48
                 , s_2(56) -> 55
                 , s_2(57) -> 54
                 , s_2(57) -> 56
                 , s_2(58) -> 19
                 , s_2(58) -> 21
                 , s_2(58) -> 44
                 , s_2(58) -> 46
                 , s_2(58) -> 57
                 , s_2(58) -> 66
                 , s_2(58) -> 68
                 , s_2(60) -> 59
                 , s_2(62) -> 61
                 , s_3(60) -> 73
                 , s_3(65) -> 64
                 , s_3(66) -> 58
                 , s_3(66) -> 65
                 , s_3(68) -> 67
                 , s_3(71) -> 70
                 , f_1(22) -> 19
                 , f_1(22) -> 21
                 , f_1(22) -> 44
                 , f_1(22) -> 46
                 , f_1(22) -> 66
                 , f_1(22) -> 68
                 , f_2(47) -> 44
                 , f_2(47) -> 46
                 , f_3(69) -> 66
                 , f_3(69) -> 68
                 , g_1(52) -> 19
                 , g_1(52) -> 21
                 , g_1(52) -> 44
                 , g_1(52) -> 46
                 , g_1(52) -> 66
                 , g_1(52) -> 68
                 , j_0(9) -> 8
                 , j_1(33) -> 32
                 , j_2(59) -> 58
                 , p^#_0(2) -> 1
                 , p^#_0(4) -> 3
                 , p^#_0(6) -> 13
                 , p^#_1(28) -> 27
                 , p^#_1(30) -> 38
                 , c_0_0(1) -> 1
                 , c_2_0(13) -> 3
                 , c_2_1(38) -> 27
                 , g^#_0(2) -> 1
                 , c_4_0(3) -> 1
                 , c_4_1(27) -> 1}
      
   2) {  g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
       , p^#(0(x1)) -> c_0(p^#(x1))
       , p^#(p(s(x1))) -> c_2(p^#(x1))
       , p^#(s(x1)) -> c_1()}
      
      The usable rules for this path are the following:
      {  p(0(x1)) -> 0(s(s(p(x1))))
       , p(s(x1)) -> x1
       , p(p(s(x1))) -> p(x1)
       , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
       , f(s(x1)) -> p(s(g(p(s(s(x1))))))
       , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(0(x1)) -> 0(s(s(p(x1))))
               , p(s(x1)) -> x1
               , p(p(s(x1))) -> p(x1)
               , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
               , f(s(x1)) -> p(s(g(p(s(s(x1))))))
               , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
               , p^#(0(x1)) -> c_0(p^#(x1))
               , p^#(p(s(x1))) -> c_2(p^#(x1))
               , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
               , p^#(s(x1)) -> c_1()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)
             , p^#(s(x1)) -> c_1()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(s(x1)) -> x1
               , p(p(s(x1))) -> p(x1)
               , p^#(s(x1)) -> c_1()}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [3]
                  c_0(x1) = [1] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [2]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(p(s(x1))) -> c_2(p^#(x1))}
            and weakly orienting the rules
            {  p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)
             , p^#(s(x1)) -> c_1()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(p(s(x1))) -> c_2(p^#(x1))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))}
            and weakly orienting the rules
            {  p^#(p(s(x1))) -> c_2(p^#(x1))
             , p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)
             , p^#(s(x1)) -> c_1()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [3]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [9]
                  c_4(x1) = [1] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
             , p^#(0(x1)) -> c_0(p^#(x1))}
            and weakly orienting the rules
            {  g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
             , p^#(p(s(x1))) -> c_2(p^#(x1))
             , p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)
             , p^#(s(x1)) -> c_1()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
               , p^#(0(x1)) -> c_0(p^#(x1))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [14]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))}
            and weakly orienting the rules
            {  j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
             , p^#(0(x1)) -> c_0(p^#(x1))
             , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
             , p^#(p(s(x1))) -> c_2(p^#(x1))
             , p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)
             , p^#(s(x1)) -> c_1()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [12]
                  j(x1) = [1] x1 + [6]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [1]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [13]
                  c_4(x1) = [1] x1 + [3]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  p(0(x1)) -> 0(s(s(p(x1))))
                 , f(s(x1)) -> p(s(g(p(s(s(x1))))))}
              Weak Rules:
                {  g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
                 , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
                 , p^#(0(x1)) -> c_0(p^#(x1))
                 , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
                 , p^#(p(s(x1))) -> c_2(p^#(x1))
                 , p(s(x1)) -> x1
                 , p(p(s(x1))) -> p(x1)
                 , p^#(s(x1)) -> c_1()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  p(0(x1)) -> 0(s(s(p(x1))))
                   , f(s(x1)) -> p(s(g(p(s(s(x1))))))}
                Weak Rules:
                  {  g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
                   , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
                   , p^#(0(x1)) -> c_0(p^#(x1))
                   , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
                   , p^#(p(s(x1))) -> c_2(p^#(x1))
                   , p(s(x1)) -> x1
                   , p(p(s(x1))) -> p(x1)
                   , p^#(s(x1)) -> c_1()}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  p_0(2) -> 10
                 , p_0(2) -> 12
                 , p_0(2) -> 25
                 , p_0(5) -> 4
                 , p_0(11) -> 10
                 , p_0(11) -> 25
                 , p_1(2) -> 16
                 , p_1(2) -> 22
                 , p_1(2) -> 24
                 , p_1(10) -> 22
                 , p_1(10) -> 24
                 , p_1(12) -> 22
                 , p_1(12) -> 24
                 , p_1(17) -> 8
                 , p_1(20) -> 19
                 , p_1(20) -> 21
                 , p_1(20) -> 44
                 , p_1(20) -> 46
                 , p_1(20) -> 66
                 , p_1(20) -> 68
                 , p_1(23) -> 22
                 , p_1(25) -> 22
                 , p_1(25) -> 24
                 , p_1(26) -> 25
                 , p_1(29) -> 28
                 , p_1(35) -> 34
                 , p_1(35) -> 50
                 , p_1(37) -> 34
                 , p_1(37) -> 36
                 , p_1(37) -> 50
                 , p_1(53) -> 52
                 , p_2(2) -> 47
                 , p_2(2) -> 49
                 , p_2(2) -> 69
                 , p_2(2) -> 71
                 , p_2(14) -> 41
                 , p_2(34) -> 47
                 , p_2(34) -> 49
                 , p_2(36) -> 47
                 , p_2(36) -> 49
                 , p_2(42) -> 32
                 , p_2(45) -> 44
                 , p_2(48) -> 47
                 , p_2(50) -> 47
                 , p_2(50) -> 49
                 , p_2(51) -> 50
                 , p_2(54) -> 19
                 , p_2(54) -> 21
                 , p_2(54) -> 44
                 , p_2(54) -> 46
                 , p_2(54) -> 66
                 , p_2(54) -> 68
                 , p_2(55) -> 54
                 , p_2(56) -> 19
                 , p_2(56) -> 21
                 , p_2(56) -> 44
                 , p_2(56) -> 46
                 , p_2(56) -> 66
                 , p_2(56) -> 68
                 , p_2(59) -> 72
                 , p_2(60) -> 69
                 , p_2(60) -> 71
                 , p_2(61) -> 60
                 , p_2(61) -> 72
                 , p_2(62) -> 69
                 , p_2(62) -> 71
                 , p_2(63) -> 60
                 , p_2(63) -> 62
                 , p_2(63) -> 72
                 , p_2(64) -> 58
                 , p_2(67) -> 66
                 , p_2(70) -> 69
                 , p_2(72) -> 69
                 , p_2(72) -> 71
                 , 0_0(2) -> 2
                 , 0_0(2) -> 10
                 , 0_0(2) -> 12
                 , 0_0(2) -> 16
                 , 0_0(2) -> 22
                 , 0_0(2) -> 24
                 , 0_0(2) -> 25
                 , 0_0(2) -> 34
                 , 0_0(2) -> 36
                 , 0_0(2) -> 47
                 , 0_0(2) -> 49
                 , 0_0(2) -> 50
                 , 0_0(2) -> 60
                 , 0_0(2) -> 62
                 , 0_0(2) -> 69
                 , 0_0(2) -> 71
                 , 0_0(2) -> 72
                 , 0_1(14) -> 10
                 , 0_1(14) -> 12
                 , 0_1(14) -> 16
                 , 0_1(14) -> 22
                 , 0_1(14) -> 24
                 , 0_1(14) -> 25
                 , 0_1(14) -> 47
                 , 0_1(14) -> 49
                 , 0_1(14) -> 69
                 , 0_1(14) -> 71
                 , 0_2(39) -> 22
                 , 0_2(39) -> 24
                 , s_0(2) -> 2
                 , s_0(2) -> 10
                 , s_0(2) -> 12
                 , s_0(2) -> 16
                 , s_0(2) -> 22
                 , s_0(2) -> 24
                 , s_0(2) -> 25
                 , s_0(2) -> 34
                 , s_0(2) -> 36
                 , s_0(2) -> 47
                 , s_0(2) -> 49
                 , s_0(2) -> 50
                 , s_0(2) -> 60
                 , s_0(2) -> 62
                 , s_0(2) -> 69
                 , s_0(2) -> 71
                 , s_0(2) -> 72
                 , s_0(6) -> 5
                 , s_0(7) -> 4
                 , s_0(7) -> 6
                 , s_0(8) -> 7
                 , s_0(10) -> 9
                 , s_0(12) -> 11
                 , s_1(2) -> 37
                 , s_1(2) -> 52
                 , s_1(10) -> 26
                 , s_1(15) -> 14
                 , s_1(16) -> 15
                 , s_1(16) -> 41
                 , s_1(18) -> 17
                 , s_1(19) -> 8
                 , s_1(19) -> 18
                 , s_1(21) -> 20
                 , s_1(24) -> 23
                 , s_1(30) -> 29
                 , s_1(31) -> 28
                 , s_1(31) -> 30
                 , s_1(32) -> 31
                 , s_1(34) -> 33
                 , s_1(36) -> 35
                 , s_1(37) -> 53
                 , s_2(2) -> 63
                 , s_2(34) -> 51
                 , s_2(40) -> 39
                 , s_2(41) -> 40
                 , s_2(43) -> 42
                 , s_2(44) -> 32
                 , s_2(44) -> 43
                 , s_2(46) -> 45
                 , s_2(49) -> 48
                 , s_2(56) -> 55
                 , s_2(57) -> 54
                 , s_2(57) -> 56
                 , s_2(58) -> 19
                 , s_2(58) -> 21
                 , s_2(58) -> 44
                 , s_2(58) -> 46
                 , s_2(58) -> 57
                 , s_2(58) -> 66
                 , s_2(58) -> 68
                 , s_2(60) -> 59
                 , s_2(62) -> 61
                 , s_2(65) -> 64
                 , s_2(66) -> 58
                 , s_2(66) -> 65
                 , s_2(68) -> 67
                 , s_2(71) -> 70
                 , f_1(22) -> 19
                 , f_1(22) -> 21
                 , f_1(22) -> 44
                 , f_1(22) -> 46
                 , f_1(22) -> 66
                 , f_1(22) -> 68
                 , f_2(47) -> 44
                 , f_2(47) -> 46
                 , f_2(69) -> 66
                 , f_2(69) -> 68
                 , g_1(52) -> 19
                 , g_1(52) -> 21
                 , g_1(52) -> 44
                 , g_1(52) -> 46
                 , g_1(52) -> 66
                 , g_1(52) -> 68
                 , j_0(9) -> 8
                 , j_1(33) -> 32
                 , j_2(59) -> 58
                 , p^#_0(2) -> 1
                 , p^#_0(4) -> 3
                 , p^#_0(6) -> 13
                 , p^#_1(28) -> 27
                 , p^#_1(30) -> 38
                 , c_0_0(1) -> 1
                 , c_1_0() -> 1
                 , c_1_0() -> 3
                 , c_1_0() -> 13
                 , c_1_1() -> 27
                 , c_1_1() -> 38
                 , c_2_0(13) -> 3
                 , c_2_1(38) -> 27
                 , g^#_0(2) -> 1
                 , c_4_0(3) -> 1
                 , c_4_1(27) -> 1}
      
   3) {  g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
       , p^#(s(x1)) -> c_1()}
      
      The usable rules for this path are the following:
      {  p(0(x1)) -> 0(s(s(p(x1))))
       , p(s(x1)) -> x1
       , p(p(s(x1))) -> p(x1)
       , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
       , f(s(x1)) -> p(s(g(p(s(s(x1))))))
       , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(0(x1)) -> 0(s(s(p(x1))))
               , p(s(x1)) -> x1
               , p(p(s(x1))) -> p(x1)
               , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
               , f(s(x1)) -> p(s(g(p(s(s(x1))))))
               , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
               , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
               , p^#(s(x1)) -> c_1()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(s(x1)) -> x1
               , p(p(s(x1))) -> p(x1)}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [1]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(s(x1)) -> c_1()}
            and weakly orienting the rules
            {  p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(s(x1)) -> c_1()}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [1]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))}
            and weakly orienting the rules
            {  p^#(s(x1)) -> c_1()
             , p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [9]
                  c_4(x1) = [1] x1 + [1]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))}
            and weakly orienting the rules
            {  g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
             , p^#(s(x1)) -> c_1()
             , p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [8]
                  j(x1) = [1] x1 + [1]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [9]
                  c_4(x1) = [1] x1 + [1]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f(s(x1)) -> p(s(g(p(s(s(x1))))))}
            and weakly orienting the rules
            {  g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
             , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
             , p^#(s(x1)) -> c_1()
             , p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f(s(x1)) -> p(s(g(p(s(s(x1))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [14]
                  g(x1) = [1] x1 + [11]
                  j(x1) = [1] x1 + [5]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [13]
                  c_4(x1) = [1] x1 + [4]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  p(0(x1)) -> 0(s(s(p(x1))))
                 , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))}
              Weak Rules:
                {  f(s(x1)) -> p(s(g(p(s(s(x1))))))
                 , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
                 , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
                 , p^#(s(x1)) -> c_1()
                 , p(s(x1)) -> x1
                 , p(p(s(x1))) -> p(x1)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  p(0(x1)) -> 0(s(s(p(x1))))
                   , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))}
                Weak Rules:
                  {  f(s(x1)) -> p(s(g(p(s(s(x1))))))
                   , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
                   , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
                   , p^#(s(x1)) -> c_1()
                   , p(s(x1)) -> x1
                   , p(p(s(x1))) -> p(x1)}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  p_0(2) -> 10
                 , p_0(2) -> 12
                 , p_0(2) -> 24
                 , p_0(5) -> 4
                 , p_0(11) -> 10
                 , p_0(11) -> 24
                 , p_1(2) -> 15
                 , p_1(2) -> 21
                 , p_1(2) -> 23
                 , p_1(10) -> 21
                 , p_1(10) -> 23
                 , p_1(12) -> 21
                 , p_1(12) -> 23
                 , p_1(16) -> 8
                 , p_1(19) -> 18
                 , p_1(19) -> 20
                 , p_1(19) -> 42
                 , p_1(19) -> 44
                 , p_1(19) -> 64
                 , p_1(19) -> 66
                 , p_1(22) -> 21
                 , p_1(24) -> 21
                 , p_1(24) -> 23
                 , p_1(25) -> 24
                 , p_1(28) -> 27
                 , p_1(34) -> 33
                 , p_1(34) -> 48
                 , p_1(36) -> 33
                 , p_1(36) -> 35
                 , p_1(36) -> 48
                 , p_1(51) -> 50
                 , p_2(2) -> 45
                 , p_2(2) -> 47
                 , p_2(13) -> 39
                 , p_2(33) -> 45
                 , p_2(33) -> 47
                 , p_2(35) -> 45
                 , p_2(35) -> 47
                 , p_2(40) -> 31
                 , p_2(43) -> 42
                 , p_2(46) -> 45
                 , p_2(48) -> 45
                 , p_2(48) -> 47
                 , p_2(49) -> 48
                 , p_2(52) -> 18
                 , p_2(52) -> 20
                 , p_2(52) -> 42
                 , p_2(52) -> 44
                 , p_2(52) -> 64
                 , p_2(52) -> 66
                 , p_2(53) -> 52
                 , p_2(54) -> 18
                 , p_2(54) -> 20
                 , p_2(54) -> 42
                 , p_2(54) -> 44
                 , p_2(54) -> 64
                 , p_2(54) -> 66
                 , p_2(59) -> 58
                 , p_2(59) -> 70
                 , p_2(61) -> 58
                 , p_2(61) -> 60
                 , p_2(61) -> 70
                 , p_3(2) -> 67
                 , p_3(2) -> 69
                 , p_3(58) -> 67
                 , p_3(58) -> 69
                 , p_3(60) -> 67
                 , p_3(60) -> 69
                 , p_3(62) -> 56
                 , p_3(65) -> 64
                 , p_3(68) -> 67
                 , p_3(70) -> 67
                 , p_3(70) -> 69
                 , p_3(71) -> 70
                 , 0_0(2) -> 2
                 , 0_0(2) -> 10
                 , 0_0(2) -> 12
                 , 0_0(2) -> 15
                 , 0_0(2) -> 21
                 , 0_0(2) -> 23
                 , 0_0(2) -> 24
                 , 0_0(2) -> 33
                 , 0_0(2) -> 35
                 , 0_0(2) -> 45
                 , 0_0(2) -> 47
                 , 0_0(2) -> 48
                 , 0_0(2) -> 58
                 , 0_0(2) -> 60
                 , 0_0(2) -> 67
                 , 0_0(2) -> 69
                 , 0_0(2) -> 70
                 , 0_1(13) -> 10
                 , 0_1(13) -> 12
                 , 0_1(13) -> 15
                 , 0_1(13) -> 21
                 , 0_1(13) -> 23
                 , 0_1(13) -> 24
                 , 0_1(13) -> 45
                 , 0_1(13) -> 47
                 , 0_1(13) -> 67
                 , 0_1(13) -> 69
                 , 0_2(37) -> 21
                 , 0_2(37) -> 23
                 , s_0(2) -> 2
                 , s_0(2) -> 10
                 , s_0(2) -> 12
                 , s_0(2) -> 15
                 , s_0(2) -> 21
                 , s_0(2) -> 23
                 , s_0(2) -> 24
                 , s_0(2) -> 33
                 , s_0(2) -> 35
                 , s_0(2) -> 45
                 , s_0(2) -> 47
                 , s_0(2) -> 48
                 , s_0(2) -> 58
                 , s_0(2) -> 60
                 , s_0(2) -> 67
                 , s_0(2) -> 69
                 , s_0(2) -> 70
                 , s_0(6) -> 5
                 , s_0(7) -> 4
                 , s_0(7) -> 6
                 , s_0(8) -> 7
                 , s_0(10) -> 9
                 , s_0(12) -> 11
                 , s_1(2) -> 36
                 , s_1(2) -> 50
                 , s_1(10) -> 25
                 , s_1(14) -> 13
                 , s_1(15) -> 14
                 , s_1(15) -> 39
                 , s_1(17) -> 16
                 , s_1(18) -> 8
                 , s_1(18) -> 17
                 , s_1(20) -> 19
                 , s_1(23) -> 22
                 , s_1(29) -> 28
                 , s_1(30) -> 27
                 , s_1(30) -> 29
                 , s_1(31) -> 30
                 , s_1(33) -> 32
                 , s_1(35) -> 34
                 , s_1(36) -> 51
                 , s_2(2) -> 61
                 , s_2(33) -> 49
                 , s_2(38) -> 37
                 , s_2(39) -> 38
                 , s_2(41) -> 40
                 , s_2(42) -> 31
                 , s_2(42) -> 41
                 , s_2(44) -> 43
                 , s_2(47) -> 46
                 , s_2(54) -> 53
                 , s_2(55) -> 52
                 , s_2(55) -> 54
                 , s_2(56) -> 18
                 , s_2(56) -> 20
                 , s_2(56) -> 42
                 , s_2(56) -> 44
                 , s_2(56) -> 55
                 , s_2(56) -> 64
                 , s_2(56) -> 66
                 , s_2(58) -> 57
                 , s_2(60) -> 59
                 , s_3(58) -> 71
                 , s_3(63) -> 62
                 , s_3(64) -> 56
                 , s_3(64) -> 63
                 , s_3(66) -> 65
                 , s_3(69) -> 68
                 , f_1(21) -> 18
                 , f_1(21) -> 20
                 , f_1(21) -> 42
                 , f_1(21) -> 44
                 , f_1(21) -> 64
                 , f_1(21) -> 66
                 , f_2(45) -> 42
                 , f_2(45) -> 44
                 , f_3(67) -> 64
                 , f_3(67) -> 66
                 , g_1(50) -> 18
                 , g_1(50) -> 20
                 , g_1(50) -> 42
                 , g_1(50) -> 44
                 , g_1(50) -> 64
                 , g_1(50) -> 66
                 , j_0(9) -> 8
                 , j_1(32) -> 31
                 , j_2(57) -> 56
                 , p^#_0(2) -> 1
                 , p^#_0(4) -> 3
                 , p^#_1(27) -> 26
                 , c_1_0() -> 1
                 , c_1_0() -> 3
                 , c_1_1() -> 26
                 , g^#_0(2) -> 1
                 , c_4_0(3) -> 1
                 , c_4_1(26) -> 1}
      
   4) {  j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))
       , p^#(s(x1)) -> c_1()}
      
      The usable rules for this path are the following:
      {  p(0(x1)) -> 0(s(s(p(x1))))
       , p(s(x1)) -> x1
       , p(p(s(x1))) -> p(x1)
       , f(s(x1)) -> p(s(g(p(s(s(x1))))))
       , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
       , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(0(x1)) -> 0(s(s(p(x1))))
               , p(s(x1)) -> x1
               , p(p(s(x1))) -> p(x1)
               , f(s(x1)) -> p(s(g(p(s(s(x1))))))
               , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
               , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
               , j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))
               , p^#(s(x1)) -> c_1()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(s(x1)) -> x1
               , p(p(s(x1))) -> p(x1)}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [4]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(s(x1)) -> c_1()}
            and weakly orienting the rules
            {  p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(s(x1)) -> c_1()}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [2]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))}
            and weakly orienting the rules
            {  p^#(s(x1)) -> c_1()
             , p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [2]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [9]
                  c_5(x1) = [1] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))}
            and weakly orienting the rules
            {  j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))
             , p^#(s(x1)) -> c_1()
             , p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [8]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [9]
                  c_5(x1) = [1] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))}
            and weakly orienting the rules
            {  j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
             , j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))
             , p^#(s(x1)) -> c_1()
             , p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [14]
                  j(x1) = [1] x1 + [8]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [9]
                  c_5(x1) = [1] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  p(0(x1)) -> 0(s(s(p(x1))))
                 , f(s(x1)) -> p(s(g(p(s(s(x1))))))}
              Weak Rules:
                {  g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
                 , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
                 , j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))
                 , p^#(s(x1)) -> c_1()
                 , p(s(x1)) -> x1
                 , p(p(s(x1))) -> p(x1)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  p(0(x1)) -> 0(s(s(p(x1))))
                   , f(s(x1)) -> p(s(g(p(s(s(x1))))))}
                Weak Rules:
                  {  g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
                   , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
                   , j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))
                   , p^#(s(x1)) -> c_1()
                   , p(s(x1)) -> x1
                   , p(p(s(x1))) -> p(x1)}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  p_0(2) -> 9
                 , p_0(2) -> 11
                 , p_0(2) -> 12
                 , p_0(7) -> 6
                 , p_0(10) -> 9
                 , p_0(12) -> 9
                 , p_0(12) -> 11
                 , p_1(2) -> 15
                 , p_1(2) -> 22
                 , p_1(2) -> 24
                 , p_1(2) -> 43
                 , p_1(2) -> 45
                 , p_1(13) -> 15
                 , p_1(20) -> 19
                 , p_1(23) -> 22
                 , p_1(25) -> 22
                 , p_1(25) -> 24
                 , p_1(25) -> 43
                 , p_1(25) -> 45
                 , p_1(26) -> 25
                 , p_1(26) -> 36
                 , p_1(26) -> 46
                 , p_1(27) -> 6
                 , p_1(27) -> 8
                 , p_1(27) -> 19
                 , p_1(27) -> 21
                 , p_1(27) -> 28
                 , p_1(27) -> 40
                 , p_1(27) -> 42
                 , p_1(30) -> 29
                 , p_1(31) -> 27
                 , p_1(32) -> 6
                 , p_1(32) -> 8
                 , p_1(32) -> 19
                 , p_1(32) -> 21
                 , p_1(32) -> 28
                 , p_1(32) -> 40
                 , p_1(32) -> 42
                 , p_1(35) -> 46
                 , p_1(36) -> 43
                 , p_1(36) -> 45
                 , p_1(37) -> 36
                 , p_1(37) -> 46
                 , p_1(38) -> 34
                 , p_1(41) -> 40
                 , p_1(44) -> 43
                 , p_1(46) -> 43
                 , p_1(46) -> 45
                 , 0_0(2) -> 2
                 , 0_0(2) -> 9
                 , 0_0(2) -> 11
                 , 0_0(2) -> 12
                 , 0_0(2) -> 15
                 , 0_0(2) -> 22
                 , 0_0(2) -> 24
                 , 0_0(2) -> 25
                 , 0_0(2) -> 36
                 , 0_0(2) -> 43
                 , 0_0(2) -> 45
                 , 0_0(2) -> 46
                 , 0_1(13) -> 9
                 , 0_1(13) -> 11
                 , 0_1(13) -> 12
                 , 0_1(13) -> 15
                 , 0_1(13) -> 22
                 , 0_1(13) -> 24
                 , 0_1(15) -> 43
                 , 0_1(15) -> 45
                 , s_0(2) -> 2
                 , s_0(2) -> 9
                 , s_0(2) -> 11
                 , s_0(2) -> 12
                 , s_0(2) -> 15
                 , s_0(2) -> 22
                 , s_0(2) -> 24
                 , s_0(2) -> 25
                 , s_0(2) -> 36
                 , s_0(2) -> 43
                 , s_0(2) -> 45
                 , s_0(2) -> 46
                 , s_0(5) -> 4
                 , s_0(6) -> 5
                 , s_0(8) -> 7
                 , s_0(11) -> 10
                 , s_1(2) -> 26
                 , s_1(2) -> 29
                 , s_1(14) -> 13
                 , s_1(15) -> 14
                 , s_1(15) -> 15
                 , s_1(18) -> 17
                 , s_1(19) -> 18
                 , s_1(21) -> 20
                 , s_1(24) -> 23
                 , s_1(25) -> 37
                 , s_1(26) -> 30
                 , s_1(28) -> 27
                 , s_1(32) -> 31
                 , s_1(33) -> 27
                 , s_1(33) -> 32
                 , s_1(34) -> 6
                 , s_1(34) -> 8
                 , s_1(34) -> 19
                 , s_1(34) -> 21
                 , s_1(34) -> 28
                 , s_1(34) -> 33
                 , s_1(34) -> 40
                 , s_1(34) -> 42
                 , s_1(36) -> 35
                 , s_1(39) -> 38
                 , s_1(40) -> 34
                 , s_1(40) -> 39
                 , s_1(42) -> 41
                 , s_1(45) -> 44
                 , f_0(9) -> 6
                 , f_0(9) -> 8
                 , f_1(22) -> 19
                 , f_1(22) -> 21
                 , f_1(43) -> 40
                 , f_1(43) -> 42
                 , g_1(29) -> 6
                 , g_1(29) -> 8
                 , g_1(29) -> 19
                 , g_1(29) -> 21
                 , g_1(29) -> 28
                 , g_1(29) -> 40
                 , g_1(29) -> 42
                 , j_1(35) -> 34
                 , p^#_0(2) -> 1
                 , p^#_0(4) -> 3
                 , p^#_1(17) -> 16
                 , c_1_0() -> 1
                 , c_1_0() -> 3
                 , c_1_1() -> 16
                 , j^#_0(2) -> 1
                 , c_5_0(3) -> 1
                 , c_5_1(16) -> 1}
      
   5) {  f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))
       , p^#(s(x1)) -> c_1()}
      
      The usable rules for this path are the following:
      {  p(0(x1)) -> 0(s(s(p(x1))))
       , p(s(x1)) -> x1
       , p(p(s(x1))) -> p(x1)
       , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
       , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
       , f(s(x1)) -> p(s(g(p(s(s(x1))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(0(x1)) -> 0(s(s(p(x1))))
               , p(s(x1)) -> x1
               , p(p(s(x1))) -> p(x1)
               , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
               , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
               , f(s(x1)) -> p(s(g(p(s(s(x1))))))
               , f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))
               , p^#(s(x1)) -> c_1()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(s(x1)) -> x1
               , p(p(s(x1))) -> p(x1)}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [1]
                  j(x1) = [1] x1 + [0]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [1]
                  g^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(s(x1)) -> c_1()}
            and weakly orienting the rules
            {  p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(s(x1)) -> c_1()}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [1]
                  j(x1) = [1] x1 + [0]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))}
            and weakly orienting the rules
            {  p^#(s(x1)) -> c_1()
             , p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [1]
                  j(x1) = [1] x1 + [0]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [1]
                  g^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f(s(x1)) -> p(s(g(p(s(s(x1))))))}
            and weakly orienting the rules
            {  f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))
             , p^#(s(x1)) -> c_1()
             , p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f(s(x1)) -> p(s(g(p(s(s(x1))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [12]
                  g(x1) = [1] x1 + [1]
                  j(x1) = [1] x1 + [0]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [3]
                  g^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))}
            and weakly orienting the rules
            {  f(s(x1)) -> p(s(g(p(s(s(x1))))))
             , f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))
             , p^#(s(x1)) -> c_1()
             , p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [3]
                  g(x1) = [1] x1 + [1]
                  j(x1) = [1] x1 + [12]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [5]
                  c_3(x1) = [1] x1 + [1]
                  g^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  p(0(x1)) -> 0(s(s(p(x1))))
                 , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))}
              Weak Rules:
                {  j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
                 , f(s(x1)) -> p(s(g(p(s(s(x1))))))
                 , f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))
                 , p^#(s(x1)) -> c_1()
                 , p(s(x1)) -> x1
                 , p(p(s(x1))) -> p(x1)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  p(0(x1)) -> 0(s(s(p(x1))))
                   , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))}
                Weak Rules:
                  {  j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
                   , f(s(x1)) -> p(s(g(p(s(s(x1))))))
                   , f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))
                   , p^#(s(x1)) -> c_1()
                   , p(s(x1)) -> x1
                   , p(p(s(x1))) -> p(x1)}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  p_0(2) -> 6
                 , p_1(2) -> 9
                 , p_1(2) -> 25
                 , p_1(2) -> 27
                 , p_1(10) -> 5
                 , p_1(11) -> 10
                 , p_1(12) -> 5
                 , p_1(15) -> 28
                 , p_1(16) -> 25
                 , p_1(16) -> 27
                 , p_1(17) -> 16
                 , p_1(17) -> 28
                 , p_1(17) -> 52
                 , p_1(18) -> 25
                 , p_1(18) -> 27
                 , p_1(19) -> 16
                 , p_1(19) -> 18
                 , p_1(19) -> 28
                 , p_1(19) -> 52
                 , p_1(20) -> 14
                 , p_1(23) -> 22
                 , p_1(26) -> 25
                 , p_1(28) -> 25
                 , p_1(28) -> 27
                 , p_1(30) -> 22
                 , p_1(30) -> 24
                 , p_1(30) -> 46
                 , p_1(30) -> 48
                 , p_1(30) -> 56
                 , p_1(30) -> 58
                 , p_1(33) -> 32
                 , p_2(2) -> 49
                 , p_2(2) -> 51
                 , p_2(2) -> 59
                 , p_2(2) -> 61
                 , p_2(16) -> 49
                 , p_2(16) -> 51
                 , p_2(18) -> 49
                 , p_2(18) -> 51
                 , p_2(34) -> 22
                 , p_2(34) -> 24
                 , p_2(34) -> 31
                 , p_2(34) -> 46
                 , p_2(34) -> 48
                 , p_2(34) -> 56
                 , p_2(34) -> 58
                 , p_2(35) -> 34
                 , p_2(36) -> 22
                 , p_2(36) -> 24
                 , p_2(36) -> 31
                 , p_2(36) -> 46
                 , p_2(36) -> 48
                 , p_2(36) -> 56
                 , p_2(36) -> 58
                 , p_2(39) -> 62
                 , p_2(40) -> 59
                 , p_2(40) -> 61
                 , p_2(41) -> 40
                 , p_2(41) -> 62
                 , p_2(42) -> 59
                 , p_2(42) -> 61
                 , p_2(43) -> 40
                 , p_2(43) -> 42
                 , p_2(43) -> 62
                 , p_2(44) -> 14
                 , p_2(47) -> 46
                 , p_2(50) -> 49
                 , p_2(52) -> 49
                 , p_2(52) -> 51
                 , p_2(53) -> 52
                 , p_2(54) -> 38
                 , p_2(57) -> 56
                 , p_2(60) -> 59
                 , p_2(62) -> 59
                 , p_2(62) -> 61
                 , 0_0(2) -> 2
                 , 0_0(2) -> 6
                 , 0_0(2) -> 9
                 , 0_0(2) -> 16
                 , 0_0(2) -> 18
                 , 0_0(2) -> 25
                 , 0_0(2) -> 27
                 , 0_0(2) -> 28
                 , 0_0(2) -> 40
                 , 0_0(2) -> 42
                 , 0_0(2) -> 49
                 , 0_0(2) -> 51
                 , 0_0(2) -> 52
                 , 0_0(2) -> 59
                 , 0_0(2) -> 61
                 , 0_0(2) -> 62
                 , 0_1(7) -> 6
                 , 0_1(7) -> 9
                 , 0_1(7) -> 25
                 , 0_1(7) -> 27
                 , 0_1(7) -> 49
                 , 0_1(7) -> 51
                 , 0_1(7) -> 59
                 , 0_1(7) -> 61
                 , s_0(2) -> 2
                 , s_0(2) -> 6
                 , s_0(2) -> 9
                 , s_0(2) -> 16
                 , s_0(2) -> 18
                 , s_0(2) -> 25
                 , s_0(2) -> 27
                 , s_0(2) -> 28
                 , s_0(2) -> 40
                 , s_0(2) -> 42
                 , s_0(2) -> 49
                 , s_0(2) -> 51
                 , s_0(2) -> 52
                 , s_0(2) -> 59
                 , s_0(2) -> 61
                 , s_0(2) -> 62
                 , s_0(5) -> 4
                 , s_1(2) -> 19
                 , s_1(2) -> 32
                 , s_1(8) -> 7
                 , s_1(9) -> 8
                 , s_1(12) -> 11
                 , s_1(13) -> 10
                 , s_1(13) -> 12
                 , s_1(14) -> 5
                 , s_1(14) -> 13
                 , s_1(16) -> 15
                 , s_1(18) -> 17
                 , s_1(19) -> 33
                 , s_1(21) -> 20
                 , s_1(22) -> 14
                 , s_1(22) -> 21
                 , s_1(24) -> 23
                 , s_1(27) -> 26
                 , s_1(31) -> 30
                 , s_2(2) -> 43
                 , s_2(16) -> 53
                 , s_2(36) -> 35
                 , s_2(37) -> 34
                 , s_2(37) -> 36
                 , s_2(38) -> 22
                 , s_2(38) -> 24
                 , s_2(38) -> 31
                 , s_2(38) -> 37
                 , s_2(38) -> 46
                 , s_2(38) -> 48
                 , s_2(38) -> 56
                 , s_2(38) -> 58
                 , s_2(40) -> 39
                 , s_2(42) -> 41
                 , s_2(45) -> 44
                 , s_2(46) -> 14
                 , s_2(46) -> 45
                 , s_2(48) -> 47
                 , s_2(51) -> 50
                 , s_2(55) -> 54
                 , s_2(56) -> 38
                 , s_2(56) -> 55
                 , s_2(58) -> 57
                 , s_2(61) -> 60
                 , f_1(25) -> 22
                 , f_1(25) -> 24
                 , f_2(49) -> 46
                 , f_2(49) -> 48
                 , f_2(59) -> 56
                 , f_2(59) -> 58
                 , g_0(6) -> 5
                 , g_1(32) -> 22
                 , g_1(32) -> 24
                 , g_1(32) -> 31
                 , g_1(32) -> 46
                 , g_1(32) -> 48
                 , g_1(32) -> 56
                 , g_1(32) -> 58
                 , j_1(15) -> 14
                 , j_2(39) -> 38
                 , p^#_0(2) -> 1
                 , p^#_0(4) -> 3
                 , p^#_1(30) -> 29
                 , c_1_0() -> 1
                 , c_1_0() -> 3
                 , c_1_1() -> 29
                 , f^#_0(2) -> 1
                 , c_3_0(3) -> 1
                 , c_3_1(29) -> 1}
      
   6) {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))}
      
      The usable rules for this path are the following:
      {  p(0(x1)) -> 0(s(s(p(x1))))
       , p(s(x1)) -> x1
       , p(p(s(x1))) -> p(x1)
       , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
       , f(s(x1)) -> p(s(g(p(s(s(x1))))))
       , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(0(x1)) -> 0(s(s(p(x1))))
               , p(s(x1)) -> x1
               , p(p(s(x1))) -> p(x1)
               , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
               , f(s(x1)) -> p(s(g(p(s(s(x1))))))
               , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
               , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(s(x1)) -> x1
               , p(p(s(x1))) -> p(x1)}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [2]
                  g(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [1]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))}
            and weakly orienting the rules
            {  p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [9]
                  c_4(x1) = [1] x1 + [1]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f(s(x1)) -> p(s(g(p(s(s(x1))))))}
            and weakly orienting the rules
            {  g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
             , p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f(s(x1)) -> p(s(g(p(s(s(x1))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [4]
                  g(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [5]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [13]
                  c_4(x1) = [1] x1 + [3]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))}
            and weakly orienting the rules
            {  f(s(x1)) -> p(s(g(p(s(s(x1))))))
             , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
             , p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [8]
                  g(x1) = [1] x1 + [6]
                  j(x1) = [1] x1 + [1]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [9]
                  c_4(x1) = [1] x1 + [1]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  p(0(x1)) -> 0(s(s(p(x1))))
                 , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))}
              Weak Rules:
                {  g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
                 , f(s(x1)) -> p(s(g(p(s(s(x1))))))
                 , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
                 , p(s(x1)) -> x1
                 , p(p(s(x1))) -> p(x1)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  p(0(x1)) -> 0(s(s(p(x1))))
                   , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))}
                Weak Rules:
                  {  g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
                   , f(s(x1)) -> p(s(g(p(s(s(x1))))))
                   , g^#(s(x1)) -> c_4(p^#(p(s(s(s(j(s(p(s(p(s(x1))))))))))))
                   , p(s(x1)) -> x1
                   , p(p(s(x1))) -> p(x1)}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  p_0(2) -> 10
                 , p_0(2) -> 12
                 , p_0(2) -> 24
                 , p_0(5) -> 4
                 , p_0(11) -> 10
                 , p_0(11) -> 24
                 , p_1(2) -> 15
                 , p_1(2) -> 21
                 , p_1(2) -> 23
                 , p_1(10) -> 21
                 , p_1(10) -> 23
                 , p_1(12) -> 21
                 , p_1(12) -> 23
                 , p_1(16) -> 8
                 , p_1(19) -> 18
                 , p_1(19) -> 20
                 , p_1(19) -> 42
                 , p_1(19) -> 44
                 , p_1(19) -> 64
                 , p_1(19) -> 66
                 , p_1(22) -> 21
                 , p_1(24) -> 21
                 , p_1(24) -> 23
                 , p_1(25) -> 24
                 , p_1(28) -> 27
                 , p_1(34) -> 33
                 , p_1(34) -> 48
                 , p_1(36) -> 33
                 , p_1(36) -> 35
                 , p_1(36) -> 48
                 , p_1(51) -> 50
                 , p_2(2) -> 45
                 , p_2(2) -> 47
                 , p_2(13) -> 39
                 , p_2(33) -> 45
                 , p_2(33) -> 47
                 , p_2(35) -> 45
                 , p_2(35) -> 47
                 , p_2(40) -> 31
                 , p_2(43) -> 42
                 , p_2(46) -> 45
                 , p_2(48) -> 45
                 , p_2(48) -> 47
                 , p_2(49) -> 48
                 , p_2(52) -> 18
                 , p_2(52) -> 20
                 , p_2(52) -> 42
                 , p_2(52) -> 44
                 , p_2(52) -> 64
                 , p_2(52) -> 66
                 , p_2(53) -> 52
                 , p_2(54) -> 18
                 , p_2(54) -> 20
                 , p_2(54) -> 42
                 , p_2(54) -> 44
                 , p_2(54) -> 64
                 , p_2(54) -> 66
                 , p_2(59) -> 58
                 , p_2(59) -> 70
                 , p_2(61) -> 58
                 , p_2(61) -> 60
                 , p_2(61) -> 70
                 , p_3(2) -> 67
                 , p_3(2) -> 69
                 , p_3(58) -> 67
                 , p_3(58) -> 69
                 , p_3(60) -> 67
                 , p_3(60) -> 69
                 , p_3(62) -> 56
                 , p_3(65) -> 64
                 , p_3(68) -> 67
                 , p_3(70) -> 67
                 , p_3(70) -> 69
                 , p_3(71) -> 70
                 , 0_0(2) -> 2
                 , 0_0(2) -> 10
                 , 0_0(2) -> 12
                 , 0_0(2) -> 15
                 , 0_0(2) -> 21
                 , 0_0(2) -> 23
                 , 0_0(2) -> 24
                 , 0_0(2) -> 33
                 , 0_0(2) -> 35
                 , 0_0(2) -> 45
                 , 0_0(2) -> 47
                 , 0_0(2) -> 48
                 , 0_0(2) -> 58
                 , 0_0(2) -> 60
                 , 0_0(2) -> 67
                 , 0_0(2) -> 69
                 , 0_0(2) -> 70
                 , 0_1(13) -> 10
                 , 0_1(13) -> 12
                 , 0_1(13) -> 15
                 , 0_1(13) -> 21
                 , 0_1(13) -> 23
                 , 0_1(13) -> 24
                 , 0_1(13) -> 45
                 , 0_1(13) -> 47
                 , 0_1(13) -> 67
                 , 0_1(13) -> 69
                 , 0_2(37) -> 21
                 , 0_2(37) -> 23
                 , s_0(2) -> 2
                 , s_0(2) -> 10
                 , s_0(2) -> 12
                 , s_0(2) -> 15
                 , s_0(2) -> 21
                 , s_0(2) -> 23
                 , s_0(2) -> 24
                 , s_0(2) -> 33
                 , s_0(2) -> 35
                 , s_0(2) -> 45
                 , s_0(2) -> 47
                 , s_0(2) -> 48
                 , s_0(2) -> 58
                 , s_0(2) -> 60
                 , s_0(2) -> 67
                 , s_0(2) -> 69
                 , s_0(2) -> 70
                 , s_0(6) -> 5
                 , s_0(7) -> 4
                 , s_0(7) -> 6
                 , s_0(8) -> 7
                 , s_0(10) -> 9
                 , s_0(12) -> 11
                 , s_1(2) -> 36
                 , s_1(2) -> 50
                 , s_1(10) -> 25
                 , s_1(14) -> 13
                 , s_1(15) -> 14
                 , s_1(15) -> 39
                 , s_1(17) -> 16
                 , s_1(18) -> 8
                 , s_1(18) -> 17
                 , s_1(20) -> 19
                 , s_1(23) -> 22
                 , s_1(29) -> 28
                 , s_1(30) -> 27
                 , s_1(30) -> 29
                 , s_1(31) -> 30
                 , s_1(33) -> 32
                 , s_1(35) -> 34
                 , s_1(36) -> 51
                 , s_2(2) -> 61
                 , s_2(33) -> 49
                 , s_2(38) -> 37
                 , s_2(39) -> 38
                 , s_2(41) -> 40
                 , s_2(42) -> 31
                 , s_2(42) -> 41
                 , s_2(44) -> 43
                 , s_2(47) -> 46
                 , s_2(54) -> 53
                 , s_2(55) -> 52
                 , s_2(55) -> 54
                 , s_2(56) -> 18
                 , s_2(56) -> 20
                 , s_2(56) -> 42
                 , s_2(56) -> 44
                 , s_2(56) -> 55
                 , s_2(56) -> 64
                 , s_2(56) -> 66
                 , s_2(58) -> 57
                 , s_2(60) -> 59
                 , s_3(58) -> 71
                 , s_3(63) -> 62
                 , s_3(64) -> 56
                 , s_3(64) -> 63
                 , s_3(66) -> 65
                 , s_3(69) -> 68
                 , f_1(21) -> 18
                 , f_1(21) -> 20
                 , f_1(21) -> 42
                 , f_1(21) -> 44
                 , f_1(21) -> 64
                 , f_1(21) -> 66
                 , f_2(45) -> 42
                 , f_2(45) -> 44
                 , f_3(67) -> 64
                 , f_3(67) -> 66
                 , g_1(50) -> 18
                 , g_1(50) -> 20
                 , g_1(50) -> 42
                 , g_1(50) -> 44
                 , g_1(50) -> 64
                 , g_1(50) -> 66
                 , j_0(9) -> 8
                 , j_1(32) -> 31
                 , j_2(57) -> 56
                 , p^#_0(2) -> 1
                 , p^#_0(4) -> 3
                 , p^#_1(27) -> 26
                 , g^#_0(2) -> 1
                 , c_4_0(3) -> 1
                 , c_4_1(26) -> 1}
      
   7) {j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))}
      
      The usable rules for this path are the following:
      {  p(0(x1)) -> 0(s(s(p(x1))))
       , p(s(x1)) -> x1
       , p(p(s(x1))) -> p(x1)
       , f(s(x1)) -> p(s(g(p(s(s(x1))))))
       , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
       , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(0(x1)) -> 0(s(s(p(x1))))
               , p(s(x1)) -> x1
               , p(p(s(x1))) -> p(x1)
               , f(s(x1)) -> p(s(g(p(s(s(x1))))))
               , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
               , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
               , j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(s(x1)) -> x1
               , p(p(s(x1))) -> p(x1)}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [0]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))}
            and weakly orienting the rules
            {  p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [0]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [9]
                  c_5(x1) = [1] x1 + [1]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))}
            and weakly orienting the rules
            {  j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))
             , p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [7]
                  j(x1) = [1] x1 + [0]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [5]
                  c_5(x1) = [1] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))}
            and weakly orienting the rules
            {  g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
             , j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))
             , p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [11]
                  j(x1) = [1] x1 + [7]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [9]
                  c_5(x1) = [1] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  p(0(x1)) -> 0(s(s(p(x1))))
                 , f(s(x1)) -> p(s(g(p(s(s(x1))))))}
              Weak Rules:
                {  j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
                 , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
                 , j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))
                 , p(s(x1)) -> x1
                 , p(p(s(x1))) -> p(x1)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  p(0(x1)) -> 0(s(s(p(x1))))
                   , f(s(x1)) -> p(s(g(p(s(s(x1))))))}
                Weak Rules:
                  {  j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
                   , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
                   , j^#(s(x1)) -> c_5(p^#(s(s(p(s(f(p(s(p(p(s(x1))))))))))))
                   , p(s(x1)) -> x1
                   , p(p(s(x1))) -> p(x1)}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  p_0(2) -> 9
                 , p_0(2) -> 11
                 , p_0(2) -> 12
                 , p_0(7) -> 6
                 , p_0(10) -> 9
                 , p_0(12) -> 9
                 , p_0(12) -> 11
                 , p_1(2) -> 15
                 , p_1(2) -> 22
                 , p_1(2) -> 24
                 , p_1(2) -> 43
                 , p_1(2) -> 45
                 , p_1(13) -> 15
                 , p_1(20) -> 19
                 , p_1(23) -> 22
                 , p_1(25) -> 22
                 , p_1(25) -> 24
                 , p_1(25) -> 43
                 , p_1(25) -> 45
                 , p_1(26) -> 25
                 , p_1(26) -> 36
                 , p_1(26) -> 46
                 , p_1(27) -> 6
                 , p_1(27) -> 8
                 , p_1(27) -> 19
                 , p_1(27) -> 21
                 , p_1(27) -> 28
                 , p_1(27) -> 40
                 , p_1(27) -> 42
                 , p_1(30) -> 29
                 , p_1(31) -> 27
                 , p_1(32) -> 6
                 , p_1(32) -> 8
                 , p_1(32) -> 19
                 , p_1(32) -> 21
                 , p_1(32) -> 28
                 , p_1(32) -> 40
                 , p_1(32) -> 42
                 , p_1(35) -> 46
                 , p_1(36) -> 43
                 , p_1(36) -> 45
                 , p_1(37) -> 36
                 , p_1(37) -> 46
                 , p_1(38) -> 34
                 , p_1(41) -> 40
                 , p_1(44) -> 43
                 , p_1(46) -> 43
                 , p_1(46) -> 45
                 , 0_0(2) -> 2
                 , 0_0(2) -> 9
                 , 0_0(2) -> 11
                 , 0_0(2) -> 12
                 , 0_0(2) -> 15
                 , 0_0(2) -> 22
                 , 0_0(2) -> 24
                 , 0_0(2) -> 25
                 , 0_0(2) -> 36
                 , 0_0(2) -> 43
                 , 0_0(2) -> 45
                 , 0_0(2) -> 46
                 , 0_1(13) -> 9
                 , 0_1(13) -> 11
                 , 0_1(13) -> 12
                 , 0_1(13) -> 15
                 , 0_1(13) -> 22
                 , 0_1(13) -> 24
                 , 0_1(15) -> 43
                 , 0_1(15) -> 45
                 , s_0(2) -> 2
                 , s_0(2) -> 9
                 , s_0(2) -> 11
                 , s_0(2) -> 12
                 , s_0(2) -> 15
                 , s_0(2) -> 22
                 , s_0(2) -> 24
                 , s_0(2) -> 25
                 , s_0(2) -> 36
                 , s_0(2) -> 43
                 , s_0(2) -> 45
                 , s_0(2) -> 46
                 , s_0(5) -> 4
                 , s_0(6) -> 5
                 , s_0(8) -> 7
                 , s_0(11) -> 10
                 , s_1(2) -> 26
                 , s_1(2) -> 29
                 , s_1(14) -> 13
                 , s_1(15) -> 14
                 , s_1(15) -> 15
                 , s_1(18) -> 17
                 , s_1(19) -> 18
                 , s_1(21) -> 20
                 , s_1(24) -> 23
                 , s_1(25) -> 37
                 , s_1(26) -> 30
                 , s_1(28) -> 27
                 , s_1(32) -> 31
                 , s_1(33) -> 27
                 , s_1(33) -> 32
                 , s_1(34) -> 6
                 , s_1(34) -> 8
                 , s_1(34) -> 19
                 , s_1(34) -> 21
                 , s_1(34) -> 28
                 , s_1(34) -> 33
                 , s_1(34) -> 40
                 , s_1(34) -> 42
                 , s_1(36) -> 35
                 , s_1(39) -> 38
                 , s_1(40) -> 34
                 , s_1(40) -> 39
                 , s_1(42) -> 41
                 , s_1(45) -> 44
                 , f_0(9) -> 6
                 , f_0(9) -> 8
                 , f_1(22) -> 19
                 , f_1(22) -> 21
                 , f_1(43) -> 40
                 , f_1(43) -> 42
                 , g_1(29) -> 6
                 , g_1(29) -> 8
                 , g_1(29) -> 19
                 , g_1(29) -> 21
                 , g_1(29) -> 28
                 , g_1(29) -> 40
                 , g_1(29) -> 42
                 , j_1(35) -> 34
                 , p^#_0(2) -> 1
                 , p^#_0(4) -> 3
                 , p^#_1(17) -> 16
                 , j^#_0(2) -> 1
                 , c_5_0(3) -> 1
                 , c_5_1(16) -> 1}
      
   8) {f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))}
      
      The usable rules for this path are the following:
      {  p(0(x1)) -> 0(s(s(p(x1))))
       , p(s(x1)) -> x1
       , p(p(s(x1))) -> p(x1)
       , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
       , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
       , f(s(x1)) -> p(s(g(p(s(s(x1))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(0(x1)) -> 0(s(s(p(x1))))
               , p(s(x1)) -> x1
               , p(p(s(x1))) -> p(x1)
               , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))
               , j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
               , f(s(x1)) -> p(s(g(p(s(s(x1))))))
               , f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(s(x1)) -> x1
               , p(p(s(x1))) -> p(x1)}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [1]
                  j(x1) = [1] x1 + [2]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [1]
                  g^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))}
            and weakly orienting the rules
            {  p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [1]
                  j(x1) = [1] x1 + [0]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [1]
                  g^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f(s(x1)) -> p(s(g(p(s(s(x1))))))}
            and weakly orienting the rules
            {  f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))
             , p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f(s(x1)) -> p(s(g(p(s(s(x1))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [8]
                  g(x1) = [1] x1 + [1]
                  j(x1) = [1] x1 + [0]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [1]
                  g^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))}
            and weakly orienting the rules
            {  f(s(x1)) -> p(s(g(p(s(s(x1))))))
             , f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))
             , p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [3]
                  g(x1) = [1] x1 + [1]
                  j(x1) = [1] x1 + [12]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  p(0(x1)) -> 0(s(s(p(x1))))
                 , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))}
              Weak Rules:
                {  j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
                 , f(s(x1)) -> p(s(g(p(s(s(x1))))))
                 , f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))
                 , p(s(x1)) -> x1
                 , p(p(s(x1))) -> p(x1)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  p(0(x1)) -> 0(s(s(p(x1))))
                   , g(s(x1)) -> p(p(s(s(s(j(s(p(s(p(s(x1)))))))))))}
                Weak Rules:
                  {  j(s(x1)) -> p(s(s(p(s(f(p(s(p(p(s(x1)))))))))))
                   , f(s(x1)) -> p(s(g(p(s(s(x1))))))
                   , f^#(s(x1)) -> c_3(p^#(s(g(p(s(s(x1)))))))
                   , p(s(x1)) -> x1
                   , p(p(s(x1))) -> p(x1)}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  p_0(2) -> 6
                 , p_1(2) -> 9
                 , p_1(2) -> 25
                 , p_1(2) -> 27
                 , p_1(10) -> 5
                 , p_1(11) -> 10
                 , p_1(12) -> 5
                 , p_1(15) -> 28
                 , p_1(16) -> 25
                 , p_1(16) -> 27
                 , p_1(17) -> 16
                 , p_1(17) -> 28
                 , p_1(17) -> 52
                 , p_1(18) -> 25
                 , p_1(18) -> 27
                 , p_1(19) -> 16
                 , p_1(19) -> 18
                 , p_1(19) -> 28
                 , p_1(19) -> 52
                 , p_1(20) -> 14
                 , p_1(23) -> 22
                 , p_1(26) -> 25
                 , p_1(28) -> 25
                 , p_1(28) -> 27
                 , p_1(30) -> 22
                 , p_1(30) -> 24
                 , p_1(30) -> 46
                 , p_1(30) -> 48
                 , p_1(30) -> 56
                 , p_1(30) -> 58
                 , p_1(33) -> 32
                 , p_2(2) -> 49
                 , p_2(2) -> 51
                 , p_2(2) -> 59
                 , p_2(2) -> 61
                 , p_2(16) -> 49
                 , p_2(16) -> 51
                 , p_2(18) -> 49
                 , p_2(18) -> 51
                 , p_2(34) -> 22
                 , p_2(34) -> 24
                 , p_2(34) -> 31
                 , p_2(34) -> 46
                 , p_2(34) -> 48
                 , p_2(34) -> 56
                 , p_2(34) -> 58
                 , p_2(35) -> 34
                 , p_2(36) -> 22
                 , p_2(36) -> 24
                 , p_2(36) -> 31
                 , p_2(36) -> 46
                 , p_2(36) -> 48
                 , p_2(36) -> 56
                 , p_2(36) -> 58
                 , p_2(39) -> 62
                 , p_2(40) -> 59
                 , p_2(40) -> 61
                 , p_2(41) -> 40
                 , p_2(41) -> 62
                 , p_2(42) -> 59
                 , p_2(42) -> 61
                 , p_2(43) -> 40
                 , p_2(43) -> 42
                 , p_2(43) -> 62
                 , p_2(44) -> 14
                 , p_2(47) -> 46
                 , p_2(50) -> 49
                 , p_2(52) -> 49
                 , p_2(52) -> 51
                 , p_2(53) -> 52
                 , p_2(54) -> 38
                 , p_2(57) -> 56
                 , p_2(60) -> 59
                 , p_2(62) -> 59
                 , p_2(62) -> 61
                 , 0_0(2) -> 2
                 , 0_0(2) -> 6
                 , 0_0(2) -> 9
                 , 0_0(2) -> 16
                 , 0_0(2) -> 18
                 , 0_0(2) -> 25
                 , 0_0(2) -> 27
                 , 0_0(2) -> 28
                 , 0_0(2) -> 40
                 , 0_0(2) -> 42
                 , 0_0(2) -> 49
                 , 0_0(2) -> 51
                 , 0_0(2) -> 52
                 , 0_0(2) -> 59
                 , 0_0(2) -> 61
                 , 0_0(2) -> 62
                 , 0_1(7) -> 6
                 , 0_1(7) -> 9
                 , 0_1(7) -> 25
                 , 0_1(7) -> 27
                 , 0_1(7) -> 49
                 , 0_1(7) -> 51
                 , 0_1(7) -> 59
                 , 0_1(7) -> 61
                 , s_0(2) -> 2
                 , s_0(2) -> 6
                 , s_0(2) -> 9
                 , s_0(2) -> 16
                 , s_0(2) -> 18
                 , s_0(2) -> 25
                 , s_0(2) -> 27
                 , s_0(2) -> 28
                 , s_0(2) -> 40
                 , s_0(2) -> 42
                 , s_0(2) -> 49
                 , s_0(2) -> 51
                 , s_0(2) -> 52
                 , s_0(2) -> 59
                 , s_0(2) -> 61
                 , s_0(2) -> 62
                 , s_0(5) -> 4
                 , s_1(2) -> 19
                 , s_1(2) -> 32
                 , s_1(8) -> 7
                 , s_1(9) -> 8
                 , s_1(12) -> 11
                 , s_1(13) -> 10
                 , s_1(13) -> 12
                 , s_1(14) -> 5
                 , s_1(14) -> 13
                 , s_1(16) -> 15
                 , s_1(18) -> 17
                 , s_1(19) -> 33
                 , s_1(21) -> 20
                 , s_1(22) -> 14
                 , s_1(22) -> 21
                 , s_1(24) -> 23
                 , s_1(27) -> 26
                 , s_1(31) -> 30
                 , s_2(2) -> 43
                 , s_2(16) -> 53
                 , s_2(36) -> 35
                 , s_2(37) -> 34
                 , s_2(37) -> 36
                 , s_2(38) -> 22
                 , s_2(38) -> 24
                 , s_2(38) -> 31
                 , s_2(38) -> 37
                 , s_2(38) -> 46
                 , s_2(38) -> 48
                 , s_2(38) -> 56
                 , s_2(38) -> 58
                 , s_2(40) -> 39
                 , s_2(42) -> 41
                 , s_2(45) -> 44
                 , s_2(46) -> 14
                 , s_2(46) -> 45
                 , s_2(48) -> 47
                 , s_2(51) -> 50
                 , s_2(55) -> 54
                 , s_2(56) -> 38
                 , s_2(56) -> 55
                 , s_2(58) -> 57
                 , s_2(61) -> 60
                 , f_1(25) -> 22
                 , f_1(25) -> 24
                 , f_2(49) -> 46
                 , f_2(49) -> 48
                 , f_2(59) -> 56
                 , f_2(59) -> 58
                 , g_0(6) -> 5
                 , g_1(32) -> 22
                 , g_1(32) -> 24
                 , g_1(32) -> 31
                 , g_1(32) -> 46
                 , g_1(32) -> 48
                 , g_1(32) -> 56
                 , g_1(32) -> 58
                 , j_1(15) -> 14
                 , j_2(39) -> 38
                 , p^#_0(2) -> 1
                 , p^#_0(4) -> 3
                 , p^#_1(30) -> 29
                 , f^#_0(2) -> 1
                 , c_3_0(3) -> 1
                 , c_3_1(29) -> 1}
      
   9) {  half^#(0(x1)) -> c_6(half^#(p(s(p(s(x1))))))
       , half^#(s(s(x1))) -> c_7(half^#(p(p(s(s(x1))))))}
      
      The usable rules for this path are the following:
      {  p(0(x1)) -> 0(s(s(p(x1))))
       , p(s(x1)) -> x1
       , p(p(s(x1))) -> p(x1)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(0(x1)) -> 0(s(s(p(x1))))
               , p(s(x1)) -> x1
               , p(p(s(x1))) -> p(x1)
               , half^#(0(x1)) -> c_6(half^#(p(s(p(s(x1))))))
               , half^#(s(s(x1))) -> c_7(half^#(p(p(s(s(x1))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(s(x1)) -> x1
               , p(p(s(x1))) -> p(x1)}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  j(x1) = [0] x1 + [0]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [1] x1 + [3]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {half^#(0(x1)) -> c_6(half^#(p(s(p(s(x1))))))}
            and weakly orienting the rules
            {  p(s(x1)) -> x1
             , p(p(s(x1))) -> p(x1)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {half^#(0(x1)) -> c_6(half^#(p(s(p(s(x1))))))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  j(x1) = [0] x1 + [0]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  rd^#(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  p(0(x1)) -> 0(s(s(p(x1))))
                 , half^#(s(s(x1))) -> c_7(half^#(p(p(s(s(x1))))))}
              Weak Rules:
                {  half^#(0(x1)) -> c_6(half^#(p(s(p(s(x1))))))
                 , p(s(x1)) -> x1
                 , p(p(s(x1))) -> p(x1)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  p(0(x1)) -> 0(s(s(p(x1))))
                   , half^#(s(s(x1))) -> c_7(half^#(p(p(s(s(x1))))))}
                Weak Rules:
                  {  half^#(0(x1)) -> c_6(half^#(p(s(p(s(x1))))))
                   , p(s(x1)) -> x1
                   , p(p(s(x1))) -> p(x1)}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  p_0(3) -> 21
                 , p_0(3) -> 23
                 , p_0(22) -> 21
                 , p_1(26) -> 25
                 , p_1(27) -> 26
                 , p_1(28) -> 25
                 , p_1(28) -> 30
                 , p_1(28) -> 32
                 , p_1(31) -> 30
                 , 0_0(2) -> 2
                 , 0_0(2) -> 21
                 , 0_0(2) -> 23
                 , 0_0(2) -> 25
                 , 0_0(2) -> 30
                 , 0_0(2) -> 32
                 , 0_0(3) -> 2
                 , 0_0(3) -> 21
                 , 0_0(3) -> 23
                 , 0_0(3) -> 25
                 , 0_0(3) -> 30
                 , 0_0(3) -> 32
                 , s_0(2) -> 3
                 , s_0(2) -> 21
                 , s_0(2) -> 23
                 , s_0(2) -> 25
                 , s_0(2) -> 30
                 , s_0(2) -> 32
                 , s_0(3) -> 3
                 , s_0(3) -> 21
                 , s_0(3) -> 23
                 , s_0(3) -> 25
                 , s_0(3) -> 30
                 , s_0(3) -> 32
                 , s_0(23) -> 22
                 , s_1(2) -> 26
                 , s_1(2) -> 28
                 , s_1(3) -> 26
                 , s_1(3) -> 28
                 , s_1(28) -> 27
                 , s_1(32) -> 31
                 , half^#_0(2) -> 19
                 , half^#_0(3) -> 19
                 , half^#_0(21) -> 20
                 , half^#_1(25) -> 24
                 , half^#_1(30) -> 29
                 , c_6_0(20) -> 19
                 , c_6_1(29) -> 19
                 , c_6_1(29) -> 20
                 , c_6_1(29) -> 24
                 , c_6_1(29) -> 29
                 , c_7_1(24) -> 19
                 , c_7_1(24) -> 20
                 , c_7_1(24) -> 24
                 , c_7_1(24) -> 29}
      
   10)
      {rd^#(0(x1)) -> c_8(rd^#(x1))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           p(x1) = [0] x1 + [0]
           0(x1) = [0] x1 + [0]
           s(x1) = [0] x1 + [0]
           f(x1) = [0] x1 + [0]
           g(x1) = [0] x1 + [0]
           j(x1) = [0] x1 + [0]
           half(x1) = [0] x1 + [0]
           rd(x1) = [0] x1 + [0]
           p^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           c_1() = [0]
           c_2(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           g^#(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           j^#(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           half^#(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           rd^#(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {rd^#(0(x1)) -> c_8(rd^#(x1))}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {rd^#(0(x1)) -> c_8(rd^#(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rd^#(0(x1)) -> c_8(rd^#(x1))}
              
              Details:
                 Interpretation Functions:
                  p(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [8]
                  s(x1) = [0] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  j(x1) = [0] x1 + [0]
                  half(x1) = [0] x1 + [0]
                  rd(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c_1() = [0]
                  c_2(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  half^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  rd^#(x1) = [1] x1 + [1]
                  c_8(x1) = [1] x1 + [3]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {rd^#(0(x1)) -> c_8(rd^#(x1))}
            
            Details:         
              The given problem does not contain any strict rules